DOI QR코드

DOI QR Code

Removal of Ammonia Nitrogen, Manganese and Arsenic in The Ion Exchanged Natural Zeolite

이온 치환된 천연 제올라이트를 활용한 암모니아성 질소, Mn, As의 제거

  • Lee, Kyung-Han (Graduation School, Department Green Energy, Hoseo University) ;
  • Kil, Bo-Min (Graduation School, Department Green Energy, Hoseo University) ;
  • Ryu, Cheol-Hwi (Graduation School, Department Green Energy, Hoseo University) ;
  • Hwang, Gab-Jin (Graduation School, Department Green Energy, Hoseo University)
  • 이경한 (호서대학교 일반대학원 그린에너지공학과) ;
  • 길보민 (호서대학교 일반대학원 그린에너지공학과) ;
  • 유철휘 (호서대학교 일반대학원 그린에너지공학과) ;
  • 황갑진 (호서대학교 일반대학원 그린에너지공학과)
  • Received : 2019.09.27
  • Accepted : 2019.10.21
  • Published : 2019.10.31

Abstract

Ammonia nitrogen is well known as a substance that causes the eutrophication with a phosphorus in the water, because it is contained in the industrial wastewater, agricultural and the stockbreeding wastewater. In addition, manganese (Mn) and arsenic (As) are included in the mine treated water, etc., and are known as a source of water pollution. Natural zeolites are used to remove ammonia nitrogen in water but it have a low adsorption capacity. In order to improve the low adsorption capacity of the natural zeolite, ion substitution was carried out with $Na^+$, $Ca^{2+}$, $K^+$ and $Mg^{2+}$. The adsorption capacity and removal rate of ammonia nitrogen ($NH_4-N$) were the highest at 0.66 mg/g and 89.8% in $Na^+$ ion exchanged zeolite. Adsorption experiments of Mn and As were performed using ion exchanged zeolites. Ion exchanged zeolite with $Mg^{2+}$ showed high adsorption capacity and removal rates of Mn and As.

암모니아성 질소($NH_4-N$)는 산업 폐수, 농업 및 축산 폐수에 포함되어 있으며 인과 함께 수질의 부영양화를 일으키는 물질로 잘 알려져 있다. 또한 망간(Mn)과 비소(As)는 광산 처리수 등에 포함되어 있으며, 수질 오염의 원인 물질로 알려져 있다. 천연 제올라이트는 수중에서 암모니아성 질소를 제거하는데 사용되고 있지만 낮은 흡착능력을 가진다. 이러한 천연 제올라이트의 낮은 흡착능력을 개선하기 위해 $Na^+$, $Ca^{2+}$, $K^+$, $Mg^{2+}$로 이온 치환을 진행하였다. 암모니아성 질소($NH_4-N$)의 흡착량과 제거율은 $Na^+$로 이온 치환된 제올라이트에서 0.66 mg/g과 89.8%로 가장 높은 값을 보였다. 이온 치환된 제올라이트를 이용하여 Mn과 As의 흡착실험을 진행하였다. $Mg^{2+}$로 이온 치환된 제올라이트에서 Mn과 As의 높은 흡착량과 제거율을 보였다.

Keywords

References

  1. T. Wajima and Y. Ikegami, "A study on ammonium removal using natural zeolite: Ammonium adsorption in seawater and improvement by ion exchange", OTEC(Sagadaigaku Rikougakubufuzoku Kaiyounestuenerugihenkan Jikensisestu Houkoku), 10, 50 (2005).
  2. M. Li, X. Zhu, F. Zhu, G. Ren, G. Cao, and L. Song, "Application of modified zeolite for ammonium removal from drinking water", Desalination, 271, 295 (2011). https://doi.org/10.1016/j.desal.2010.12.047
  3. C.-W Lee, T.-K. Yoon, B.-I. Noh, B.-H. Moon, and K.-C. Lee, "Removal of nitrate using anion exchange resin", Theor. Appl. Chem. Eng., 4, 661 (1998).
  4. P. Ahmadiannamini, S. Eswaranandam, R. Wickramasinghe, and X. Qian, "Mixed-matrix membranes for efficient ammonium removal from wastewaters", J. Membr. Sci., 526, 147 (2017). https://doi.org/10.1016/j.memsci.2016.12.032
  5. N. Karapnar, "Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions", J. Hazard. Mater., 170, 1186 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.094
  6. L. Lin, C. Wana, D.-J. Lee, Z. Lei, and X. Liu, "Ammonium assists orthophosphate removal from high-strength waste waters by natural zeolite", Sep. Purif. Technol., 133, 351 (2014). https://doi.org/10.1016/j.seppur.2014.07.010
  7. A. Ates, "Effect of alkali-treatment on the characteristics of natural zeolites with different compositions", J. Coll. Inter. Sci., 523, 266 (2018). https://doi.org/10.1016/j.jcis.2018.03.115
  8. G. J. Millar, A. Winnett, T. Thompson, and S. J. Couperthwaite, "Equilibrium studies of ammonium exchange with Australian natural zeolites", J. Water Pro. Eng., 9, 47 (2016). https://doi.org/10.1016/j.jwpe.2015.11.008
  9. R. Malekian, J. AbediKoupai, S. S. Eslamian, S. F. Mousavi, K. C. Abbaspour, and M. Afyuni, "Ion-exchange process for ammonium removal and release using natural Iranian zeolite", Appl. Clay Sci., 51, 323 (2011). https://doi.org/10.1016/j.clay.2010.12.020
  10. N. Widiastuti, H. Wu, H. M. Ang, and D. Zhang, "Removal of ammonium from greywater using natural zeolite", Desalination, 277, 15 (2011). https://doi.org/10.1016/j.desal.2011.03.030
  11. J. Liua, X. Cheng, Y. Zhang, X. Wang, Q. Zou, and L. Fu, "Zeolite modification for adsorptive removal of nitrite from aqueous solutions", Micropor. Mesopor. Mater., 252, 179 (2017). https://doi.org/10.1016/j.micromeso.2017.06.029
  12. T. A. Kurniawan, W. H. Lo, and G. Y. S. Chan, "Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate", J. Hazard. Mater., 129, 80 (2006). https://doi.org/10.1016/j.jhazmat.2005.08.010
  13. H. Kurama, C. Karaguzel, T. Mergan, and M. S. Celik, "Ammonium removal from aqueous solutions by dissolved air flotation in the presence of zeolite carrier", Desalination, 253, 147 (2010). https://doi.org/10.1016/j.desal.2009.11.017
  14. C. Fux, M. Boehler, P. Huber, I. Brunner, and H. Siegrist, "Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation in a pilot plant", J. Biotech., 99, 295 (2002). https://doi.org/10.1016/S0168-1656(02)00220-1
  15. M. Lee, J. Oh, N. Park, D. Go, H. Jang, and Y. Ahn, "Change of sludge denitrification and nitrification rate according to the operating conditions in advanced wastewater treatment processes", Membr. J., 28(1), 31 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.31
  16. S. Kim and H. Lee, "Effect of media in advanced treatment of sewage using submerged membrane- coupled sequencing batch reactor", Membr. J., 26(6), 470 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.470
  17. M. Li, X. Zhu, F. Zhu, G. Ren, G. Gao, and L. Song, "Application of modified zeolite for ammonium removal from drinking water", Desalination, 271, 295 (2011). https://doi.org/10.1016/j.desal.2010.12.047
  18. T. S. Jamil, H. S. Ibrahim, I. H. A. El-Maksoud, and S. T. El-Wakeel, "Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. optimum conditions", Desalination, 258, 34 (2010). https://doi.org/10.1016/j.desal.2010.03.052
  19. O. Can, D. Balkose, and S. Ulku, "Batch and column studies on heavy metal removal using a local zeolitic tuff", Desalination, 259, 17 (2010). https://doi.org/10.1016/j.desal.2010.04.047
  20. Y. F. Wang, F. Lin, and W. Q. Pang, "Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite", J. Hazard. Mater., 142, 160 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.074
  21. A. Ates, "Effect of alkali-treatment on the characteristics of natural zeolites with different compositions", J. Coll. Inter. Sci., 523, 266 (2018). https://doi.org/10.1016/j.jcis.2018.03.115
  22. J. C. Groen, J. A. Moulijn, and J. Perez-Ramirez, "Desilication: On the controlled generation of mesoporosity in MFI zeolites", J. Mater. Chem., 16, 2121 (2006). https://doi.org/10.1039/B517510K
  23. J. C. Groen, W. Zhu, S. Brouwer, S. J. Huynink, F. Kapteijn, J. A. Moulijn, and J. Perez-Ramírez, "Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication", J. Am. Chem. Soc., 129, 355 (2007). https://doi.org/10.1021/ja065737o
  24. D. Verboekend, A. M. Chabaneix, K. Thomas, J.-P. Gilson, and J. Perez-Ramirez, "Mesoporous ZSM-22 zeolite obtained by desilication: Peculiarities associated with crystal morphology and aluminium distribution", Cryst. Eng. Comm., 13, 3408 (2011). https://doi.org/10.1039/c0ce00966k
  25. S. Mitchell, N.-L. Michels, K. Kunze, and J. Perez-Ramirez, "Visualization of hierarchically structured zeolite bodies from macro to nano length scales", Nat. Chem., 4, 825 (2012). https://doi.org/10.1038/nchem.1403
  26. H.-J. Choi, K.-S. Yang, K.-B. Heo, B.-S. Kim, and M. Kim, "Adsorption characteristic of ammonia by the cation-exchange membrane", Membr. J., 17(1), 54 (2007).
  27. D. W. Breck, "Zeolite molecular sieves", pp. 1-244, Krieger publishing company, Florida, FL (1974).