• Title/Summary/Keyword: $Li_3PO_4$

Search Result 136, Processing Time 0.025 seconds

Analysis of post-annealing effect and electrical properties of Li3PO4/SiC (Li3PO4/SiC의 후열처리에 의한 영향 및 전기적 특성 분석)

  • Lee, Hyung-Jin;Kim, Minkyung;Oh, Jong-Min;Shin, Weon-Ho;Park, Chulhwan;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.232-239
    • /
    • 2022
  • We analyzed the effect of post-annealing on lithium phosphate (Li3PO4) solid-state thin-film. Li3PO4 thin films were deposited by radio frequency (RF) sputtering, with subsequent annealing of the films at 200-400 ℃. SEM imaging of the sample surfaces showed no significant difference in morphology between the annealed and non-annealed samples. XRD analysis indicated that the samples consist of an amorphous-like structure. Post-annealing changes in binding energy were confirmed by XPS analysis, while the leakage current density at -6 V was measured to be about 7.15 times lower in a device that had been annealed at 400 ℃ vs a non-annealed device. It was confirmed that the leakage current decreased with increasing post-annealing temperature.

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

The Electric Properties of Surface Coating with CePO4 and M3(PO4)2 (M=Mg, Zn) on Li4Ti5O12 for Energy Storage Capacitor

  • Lee, Jong-Kyu;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.413-417
    • /
    • 2018
  • The $Li_4Ti_5O_{12}$ of anode material for the hybrid capacitor was coated using $CePO_4$, $M_3(PO_4)_2$ (M=Mg, Zn). The capacitance of phosphate coated $Li_4Ti_5O_{12}$ was found to be lower than that of $Li_4Ti_5O_{12}$, whereas the equivalent series resistance was higher than that of $Li_4Ti_5O_{12}$. With an increase in cycle number, the base of cylindrical cell exhibited swelling due to gas generated from the reaction between $Li_4Ti_5O_{12}$ and electrolyte. The swelling cycle number of phosphate coated $Li_4Ti_5O_{12}$ was higher than that of $Li_4Ti_5O_{12}$ due to improvement in electrochemical stability. Based on the results, it is proposed that phosphate coating can be employed as a barrier layer to control the gassing reaction by isolating the $Li_4Ti_5O_{12}$ particle from electrolyte solution.

Synthesis and VUV Photoluminescence Characterization of a Tb-activated LiGd$(PO_3)_4$

  • Tae, Se-Won;Choi, Sung-Ho;Hur, Nam-Hoe;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1283-1286
    • /
    • 2009
  • The structural and optical properties on $Tb^{3+}$ addition into LiGd$(PO_3)_4$ compound were investigated by X-ray powder diffraction and photoluminescence spectroscopy. The emission spectrum shows the strongest peak corresponding to the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ at 546 nm under 147 nm and 173 nm excitation. 85 mol% concentration of $Tb^{3+}$ for LiGd$(PO_3)_4$ is much higher than other Tb-doped phosphors.

  • PDF

The Anti-Bacterial Properties of LTP Crystallized Glass by Ag Ion Exchange (LTP계 결정화유리의 Ag이온교환에 따른 항균특성)

  • 권면주;윤영진;강원호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.183-188
    • /
    • 2002
  • Antibacterial glass ceramics composed of $5Li_2O{\cdot}36CaO{\cdot}20TiO_2{\cdot}27P_2O_5$ were Prepared. After ion exchange in the $AgNO_3$solution, crystallization phases were $AgTi_2(PO_4)_3$, $LiTi_2(PO_4)_3$ and $Ca_3(PO_4)_2$. In case of ion exchange, the crystallization phases started to be transformed from $LiTi_2(PO_4)_3$ to $AgTi_2(PO_4)_3$in 0.5 mole $AgNO_3$ solution and the transformation was almost completed in 1.0 mole. ion exchange rate of glass-ceramics powder, considering ion exchange time, was more fast than that of bulk. The bacteriostatic effect of the glass-ceramics on Staphyloroccus aureus and Salmonella typhi bacteria was more excellent than that of glass when the crystallization phase was transformed from LTP to AgTP.

  • PDF

The Electrochemical Performance of Li3V2(PO4)3/Graphene Nano-powder Composites as Cathode Material for Li-ion Batteries

  • Choi, Mansoo;Kim, Hyun-Soo;Lee, Young Moo;Jin, Bong-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.109-114
    • /
    • 2014
  • The $Li_3V_2(PO_4)_3$/graphene nano-particles composite was successfully synthesized by a facile sol-gel method. The addition of a graphene in $Li_3V_2(PO_4)_3(LVP)$(LVP) showed the high crystallinity and influenced the morphology of the $Li_3V_2(PO_4)_3$ particles observed in X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LVP/graphene samples were well connected, resulting in fast charge transfer. The effect of the addition graphene nano-particles on electrochemical performance of the materials was investigated. Compared with the pristine LVP, the LVP/graphene composite delivered a higher discharge capacity of $122mAh\;g^{-1}$ at 0.1 C-rate, better rate capability and cyclability in the potential range of 3.0-4.3 V. The electrochemical impedance spectra (EIS) measurement showed the improved electronic conductivity for the LVP/graphene composite, which can ensure the high specific capacity and rate capability.

Fabrication and Characterization of Spherical Carbon-Coated Li3V2(PO4)3 Cathode Material by Hydrothermal Method with Reducing Agent

  • Moon, Jung-In;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.519-524
    • /
    • 2019
  • Spherical $Li_3V_2(PO_4)_3$ (LVP) and carbon-coated LVP with a monoclinic phase for the cathode materials are synthesized by a hydrothermal method using $N_2H_4$ as the reducing agent and saccharose as the carbon source. The results show that single phase monoclinic LVP without impurity phases such as $LiV(P_2O_7)$, $Li(VO)(PO_4)$ and $Li_3(PO_4)$ can be obtained after calcination at $800^{\circ}C$ for 4 h. SEM and TEM images show that the particle sizes are $0.5{\sim}2{\mu}m$ and the thickness of the amorphous carbon layer is approximately 3~4 nm. CV curves for the test cell are recorded in the potential ranges of 3.0~4.3 V and 3.0~4.8 V at a scan rate of $0.01mV\;s^{-1}$ and at room temperature. At potentials between 3.0 and 4.8 V, the third $Li^+$ ions from the carbon-coated LVP can be completely extracted, at voltages close to 4.51 V. The carbon-coated LVP exhibits an initial specific discharge capacity of $118mAh\;g^{-1}$ in the voltage region of 3.0 to 4.3 V at a current rate of 0.2 C. The results indicate that the reducing agent and carbon source can affect the crystal structure and electrochemical properties of the cathode materials.

Solid-State $CO_2$ Sensor using ${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$ Solid Electrolyte and ${LiMn_2}{O_4}$ as Reference Electrode (${Li_2}{CO_3}-{Li_3}{PO_4}-{Al_2}{O_3}$계의 고체 전해질 및 ${LiMn_2}{O_4}$의 기준전극을 사용한 $CO_2$ 가스센서)

  • 김동현;윤지영;박희찬;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.817-823
    • /
    • 2000
  • A solid-state electrochemicall cell for sensing CO2 gas was fabricated using a solid electrolyte of Li2CO3-Li3PO4-Al2O3 mixture and a reference electrode of LiMn2O4. The e.m.f. (electromotive force) of sensor showed a good accordance with theoretical Nernst slope (n=2) for CO2 gas concentration range of 100-10000 ppm above 35$0^{\circ}C$. The e.m.f. of sensor was constant regardless of oxygen partial pressure at the high temperature above 0.1 atm. It was, however, a little depended on oxygen partial pressure as the pressure decreased below 0.1 atm. The oxygen-dependency of our sensor gradually disappeared as the operating temperature increased. The sensing behavior of our CO2 sensor was affected by the presence of water vapor, but its effect was small comparing with other sensors.

  • PDF

Improvement of Electrochemical Performance of LiFePO4 by Carbon Coating and Morphology Control into Porous Structure (LiFePO4/C의 carbon coating 방법 및 다공성 구조 형성에 의한 전기화학적 특성 개선)

  • Kong, Ki Chun;Ju, Jeh Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.229-236
    • /
    • 2014
  • In this study, the method to improve the electrochemical performance of $LiFePO_4$ by carbon coating and morphology control into porous structure was studied. The synthesis of $LiFePO_4$ was done by coprecipitation method by two step procedure. In the first step $FePO_4$ precursor was synthesized by coprecipitation method, followed by impregnation of lithium into the precursor at $750^{\circ}C$. The carbon coating was done by both physical and chemical coating processes. Using the physical coating process, the amount of coating layer was 6% and the capacity achieved was 125 mAh/g. In case of chemical coating process, the active material delivered 130~140 mAh/g, which is about 40% improvement of delivered capacity compared to uncoated $LiFePO_4$. For the morphology control into porous structure, we added nano particles of $Al_2O_3$ or $SiO_2$ into the active materials and formed the nanocomposite of ($Al_2O_3$ or $SiO_2$)/$LiFePO_4$. Between them, $SiO_2/LiFePO_4$ porous nanocomposite showed larger capacity of 132 mAh/g.