• Title/Summary/Keyword: $Li_2O$

Search Result 2,584, Processing Time 0.027 seconds

Electrochemical properties and crystallization of $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ Glass ($Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ 유리의 결정화와 전기화학적 특성 변화)

  • Son, Muong-Mo;Lee, Heon-Soo;Gu, Hal-Bon;Kim, Yun-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.550-553
    • /
    • 2001
  • $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ glass containing glass former, $P_{2}O_{5}$ and $Bi_{2}O_{3}$ was prepard by melting the glass batch in pt. erucible followed by guenching on the copper plate. We found that $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ glass-ceramics obtained from the crystallization of glass showed signifieantly higher capacity and longer cycle life tham $LiV_{3}O_{8}$ made from powder synthesis. In this paper, we described crystallization process and $LiV_{3}O_{8}$ crystal growth in glass matrix by increasing temperature. The electrochemical properties were strongly affected by $LiV_{3}O_{8}$ crystal growth in matrix

  • PDF

Electrochemical properties and crystallization of $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ Glass ($Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$유리의 결정화와 전기화학적 특성 변화)

  • 손명모;이헌수;구할본;김윤선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.550-553
    • /
    • 2001
  • Li$_2$O-P$_2$O$_{5}$-Bi$_2$O$_3$-V$_2$O$_{5}$ glass containing glass former, P$_2$O$_{5}$ and Bi$_2$O$_3$ was prepard by melting the glass batch in pt. erucible followed by quenching on the copper plate. We found that Li$_2$O-P$_2$O$_{5}$-Bi$_2$O$_3$-V$_2$O$_{5}$ g1ass-ceramics obtained from the crystallization of glass showed significantly higher capacity and longer cycle life tham LiV$_3$O$_{8}$ made from powder synthesis. In this paper, we described crystallization process and LiV$_3$O$_{8}$ crystal growth in glass matrix by increasing temperature. The electrochemical properties were strongly affected by LiV$_3$O$_{8}$ crystal growth in matrix.rowth in matrix.

  • PDF

7Li MAS NMR studies of Li4P2O7 and LiFePO4 materials (LiFePO4와 Li4P2O77Li MAS NMR 특성 연구)

  • Han, Doug-Young;Park, Nam-Sin;Lee, Sang-Hyuk;Lee, Hak-Man;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • [ $^7Li$ ]Magic Angle Spinning (MAS) NMR spectroscopy has been used to study the lithium local environments in $Li_4P_2O_7$ and$LiFePO_4$ materials. The purpose of this study was to know the structure of the solid electrolyte interphase (SEI) in lithium ion cells composed of $LiFePO_4$ as cathode material. $Li_4P_2O_7$ and $LiFePO_4$ were prepared by a solid-state reaction. The $^7Li$ MAS NMR experiments were carried out at variable temperatures in order to observe the local structure changes at the temperatures in $Li_4P_2O_7$ system. The $^7Li$ MAS NMR spectra of in $Li_4P_2O_7$ indicate that the lithium local environments in $Li_4P_2O_7$ were not changed in the temperature range between $27^{\circ}C$ and $97^{\circ}C$ Through this work, we confirmed that the small amount of $Li_4P_2O_7$ less than 5.0 wt% in $LiFePO_4$ could be clearly measured by the $^7Li$ MAS NMR spectroscopy at high spinning rate over than 11 kHz.

Hydrothermal synthesis of $(Li,Al)MnO_2(OH)_2$:Co compound (수열법에 의한 $(Li,Al)MnO_{2}(OH)_{2}$:Co 화합물의 합성)

  • 최종건;황완인;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.154-159
    • /
    • 2001
  • (Li,Al)$MnO_2(OH)_2$:Co compound was synthesized by hydrothermal method. $MnO_2$, LiOH.$H_2$O, $Co_3O_4$ and $Al(OH)_3$ were used as starting materials and the optimum conditions for synthesis of monolithic (Li,Al)$MnO_2(OH)_2$:Co compound were as follows : reaction temperature; $200^{\circ}C$, reaction time; 3 days, hydrothermal solvent; 3M-KOH solution, reaction apparatus; seesaw type, atomic ratio of Li:Al:Mn;Co = 1:2.1:2.5~2:0.5~1. Monolithic(Li,Al)$MnO_2(HO)_2$:Co compound synthesized in this work had a god crystallinity and excellent color forming effect as a blue pigment compatible with natural mineral. The particles of the synthesized (Li,Al)$MnO_2(OH)_2$:Co compound have hexagonal plate shape with the size of 0.5~1 $\mu\textrm{m}$.

  • PDF

Mossbauer studies of LiFeO2 powders by sol-gel process (졸겔 합성에 의한 LiFeO2분말의 Mossbauer 연구)

  • An, Sung-Yong;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.71-75
    • /
    • 2004
  • $\alpha$-LiFe $O_2$ powders have been prepared by a sol-gel method. The crystallographic and magnetic properties were characterized with a x-ray diffractometry, Mossbauer spectroscopy, and vibrating Samples magnetometry. The ${\gamma}$-LiFe $O_2$+LiFe$_{5}$ $O_{8}$ phase is observed in the Samples annealed at $600^{\circ}C$ for 3h in air and $\alpha$-LiFe $O_2$ phase is observed in the Samples annealed at $600^{\circ}C$ for 3 h in $H_2$(5%)/Ar(Bal.) gas atmosphere. The crystal structure of $\alpha$-LiFe $O_2$ is found to be cubic with a lattice a=4.193$\pm$0.0005 $\AA$. The Neel temperature of $\alpha$-LiFe $O_2$ is found to be 130$\pm$3 K.

Corrosion Behavior of Austenitic Alloys in the Molten Salts of $LiCl-Li_2O_2$ ($LiCl-Li_2O_2$ 용융염계에서 오스테나이트계 합금의 부식거동)

  • 오승철;윤기석;임종호;조수행;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.373-378
    • /
    • 2003
  • As a part of assessment of the structural material for the molten salt handling system, corrosion behavior of austenitic alloys, Fe-base and Ni-base in the molten salt of $LiCl-Li_2O_2$ was investigated in the range of temperature; 650~$725^{\circ}C$, time; 24- 168h, $Li_2O$; 3wt%, mixed gas; Ar-10%$O_2$. In the molten salt of $LiCl-Li_2O_2$, Ni-base alloys showed higher corrosion resistance than Fe-base alloys. Fe-base alloy with low Fe and high Ni contents exhibited better corrosion resistance. The scales of $Cr_2O_3$, $FeCr_2O_4$ on Fe-base alloys were showed, and $Cr_2O_3$, $NiFe_2O_4$ on Ni-base alloys were also showed.

  • PDF

A Study on Electrochemical Characteristics of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Mixed Cathode Materials ($LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 복합 정극의 특성 연구)

  • Kim, Hyun-Soo;Lee, Youn-Ho;Kim, Sung-Il;Moon, Seong-In;Kim, Woo-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.318-319
    • /
    • 2005
  • 본 연구에서는 $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 혼합 정극활물질로 사용하여 전극을 제작하고 성능을 평가하였다. $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$$LiCoO_2$의 혼합비에 따른 충방전 거동 및 임피던스 변화를 측정하였다. 각 조성에서의 초기용량은 160 ~ 170 mAh/g 정도였으며, $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$의 첨가 비율이 증가함에 따라 비용량이 증가하였으나 고율에서의 방전용량은 낮았다.

  • PDF

Cathodic Properties of $LiCoO_2$ Synthesized by a Sol-Gel Method for Lithium Ion Battery

  • 조봉준;정의덕;심윤보
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 1998
  • $LiCoO_2$ powder was synthesized in an aqueous solution by a sol-gel method and used as a cathode active material for a lithium ion rechargeable battery. The layered $LiCoO_2$ powders were prepared by igniting in air for 12 hrs at 600 ℃ $(600-LiCoO_2)$ and 850 ℃ $(850-LiCoO_2)$. The structure of the $LiCoO_2$ powder was assigned to the space group R bar 3 m (lattice parameters a=2.814 Å and c=14.04Å). The SEM pictures of $600-LiCoO_2$ revealed homogeneous and fine particles of about 1 μm in diameter. Cyclic voltammograms (CVs) of $600-LiCoO_2$ electrode displayed a set of redox peaks at 3.80/4.05 V due to the intercalation/deintercalation of the lithium ions into/out of the $LiCoO_2$ structure. CVs for the $850-LiCoO_2$ electrode had a major set of redox peaks at 3.88/4.13 V, and two small set of redox peaks at 4.18/4.42 V and 4.05/4.25 V due to phase transitions. The initial charge-discharge capacity was 156-132 mAh/g for the $600-LiCoO_2$ electrode and 158-131 mAh/g for the $850-LiCoO_2$ electrode at the current density of 0.2 mA/cm2. The cycleability of the cell consisting of the $600-LiCoO_2$ electrode was better than that of the $850-LiCoO_2$. The diffusion coefficient of the $Li^+$ ion in the $600-LiCoO_2$ electrode was calculated as $4.6{\times}10^{-8}\; cm^2/sec$.

The relation of the crystal phase and the charge/discharge capacity of $Li[Li_yMn_{2-y}]O_4$ cathode materials substituted Li (Li 치환된 $Li[Li_yMn_{2-y}]O_4$ 정극 활물질의 결정 구조와 충방전 용량과의 관계)

  • Jeong, In-Seong;Gu, Hal-Bon;Park, Bok-Gi;Son, Myeng-Mo;Lee, Heon-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.117-120
    • /
    • 2000
  • The relation of crystal phase and charge/discharge capacity of $Li[Li_yMn_{2-y}]O_4$ were studied for different degrees of Li substitution (y). All cathode material showed spinel phase based on cubic phase in X-ray diffraction. Other peaks didn't show in spite of the increase of y value in $Li[Li_yMn_{2-y}]O_4$. Ununiform of $Li[Li_yMn_{2-y}]O_4$ which calcinated by (111) face and (222) face was more stable than that of pure $LiMn_2O_4$. In addition, At TG analysis, calcined $Li[Li_{0.1}Mn_{1.9}]O_4$ exhibited much mass loss at $800{\mu}m$. The cycle performance of the $Li(Li_yMn_{2-y}]O_4$ was improved by the substitution of $Li^{1+}$ for $Mn^{3+}$ in the octahedral sites. Specially, $Li[Li_{0.08}Mn_{1.92}]O_4$ and $Li[Li_{0.1}Mn_{1.9}]O_4$ cathode materials showed the charge and discharge capacity of about 125mAh/g at first cycle, and about 95mAh/g after 70th cycle. It is excellent than that of pure $LiMn_2O_4$, which 125mAh/g at first cycle, 65mAh/g at 70th.

  • PDF

Structural properties of $Zn:LiNbO_3/Mg:LiNbO_3$ single crystal thin films grown by LPE method (LPE법으로 성장시킨 $Zn:LiNbO_3/Mg:LiNbO_3$ 단결정 박막의 구조적 특성)

  • Lee, H.J.;Shin, T.I.;Lee, J.H.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.120-123
    • /
    • 2005
  • The 5 mol% ZnO doped $LiNbO_3$ film and the 2 mol% MgO doped $LiNbO_3$ film were grown on the $LiNbO_3$ (001) substrate by liquid phase epitaxy (LPE) method with $Li_2CO_3-V_2O_5$ flux system. The crytsallinity and the lattice mismatch between $Zn:LiNbO_3$, film and $Mg:LiNbO_3$, film were analyzed by x-ray rocking curve (XRC). In addition, the ZnO and MgO distribution in the cross-section of the multilayer thin films was observed using electron probe micro analyzer (EPMA).