• 제목/요약/키워드: $LiCoO_2$-Coated Cathode

검색결과 41건 처리시간 0.032초

The Effect of Coating Thickness on the Electrochemical Properties of a Li-La-Ti-O-coated Li[Ni0.3Co0.4Mn0.3]O2 Cathode

  • Lee, Hye-Jin;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3233-3237
    • /
    • 2010
  • A $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode was modified by coating with Li-La-Ti-O, and the effect of the coating thickness on their electrochemical properties was studied. The thickness of the coating on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ was increased by increasing the wt % of the coating material. The rate capability of the Li-La-Ti-O-coated electrode was superior to that of the pristine sample. 1- and 2-wt %-coated samples showed considerable improvement in capacity retention at high C rates. However, the rate capability of a 5-wt %-coated sample decreased. All the coated samples showed a high discharge capacity and slightly improved cyclic performance under a high cut-off voltage (4.8 V) condition. Results of a storage test confirmed that the Li-La-Ti-O coating layer was effective in suppressing the dissolution of the transition metals as it offered protection from the attack of the acidic electrolyte. In particular, the 2- and 5-wt %-coated samples showed a better protection effect than the 1-wt %-coated sample.

Li[Ni0.3Co0.4Mn0.3]O2 양극물질의 Li-La-Ti-O코팅 효과 (The Effects of Li-La-Ti-O Coating on the Properties of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material)

  • 이혜진;윤수현;박보건;유제혁;김관수;김석범;박용준
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.890-896
    • /
    • 2009
  • Li(Ni, Co, Mn)$O_2$ has been known as one of the most promising cathode materials for lithium secondary batteries. However, it has some problems to overcome for commercialization such as inferior rate capability and unstable thermal stability. In order to address these problems, surface modification of cathode materials by coating has been investigated. In the coating techniques, selection of coating material is a key factor of obtaining enhanced properties of cathode materials. In this work, we introduced solid electrolyte (Li-La-Ti-O) as a coating material on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Specially, we focused on a rate performance of Li-La-Ti-O coated $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Both bare and Li-La-Ti-O 2 wt.% coated sample showed similar discharge capacity at 0.5C rate. However, as the increase of charge-discharge rate to 3C, the coated samples displayed better discharge capacity and cyclic performance than those of bare sample.

Co3(PO4)2로 표면코팅한 Li[Co0.1Ni0.15Li0.2Mn0.55]O2의 리튬 2차전지용 양극재 특성 (Cathode Characteristics of Co3(PO4)2-Coated [Co0.1Ni0.15Li0.2Mn0.55]O2 for Lithium Rechargeable Batteries)

  • 이상효;김광만;구본급
    • 한국세라믹학회지
    • /
    • 제45권2호
    • /
    • pp.112-118
    • /
    • 2008
  • To prepare the high-capacity cathode material with improved electrochemical performances, nanoparticles of $C0_3(PO_4)_2$ were coated on the powder surface of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$, which was already synthesized by simple combustion method. The coated powders after the heat treatment at >$700^{\circ}C$ surely showed well-structured crystalline property with nanoscale surface coating layer, which was consisted of $LiCOPO_4$ phase formed from the reaction bwtween $CO_3(PO_4)_2$ and lithium impurities. In addition, cycle performance was particularly improved by the $CO_3(PO_4)_2$-coating for the cathode material for lithium rechargeable batteries.

Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film

  • Lee, Hye-Jin;Nam, Sang-Cheol;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1483-1490
    • /
    • 2011
  • The protection effect of a $ZrO_2$ coating layer on a $LiCoO_2$ thin film was characterized. A wide and smooth $LiCoO_2$ thin film offers sufficient opportunity for careful observation of the reaction at the interface between cathode (coated and uncoated) and electrolyte. The formation of a $ZrO_2$ coating on a $LiCoO_2$ thin film was confirmed by secondary ion mass spectrometry. Scanning electron and atomic force microscopy were used to characterize the surface morphologies of coated and uncoated films before and after cycling. A $ZrO_2$-coated $LiCoO_2$ film showed a higher discharge capacity and rate capability than an uncoated film. This may be associated with a surface protection effect of the coating. The surface of a pristine film was damaged during cycling, whereas the coated film maintained a relatively clear surface under the same measurement conditions. This result clearly demonstrates the protection effect of a $ZrO_2$ coating on a $LiCoO_2$ thin film.

Surface Modification of a Li[Ni0.8Co0.15Al0.05]O2 Cathode using Li2SiO3 Solid Electrolyte

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.101-106
    • /
    • 2017
  • $Li_2SiO_3$ was used as a coating material to improve the electrochemical performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$. $Li_2SiO_3$ is not only a stable oxide but also an ionic conductor and can, therefore, facilitate the movement of lithium ions at the cathode/electrolyte interface. The surface of the $Li_2SiO_3$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was covered with island-type $Li_2SiO_3$ particles, and the coating process did not affect the structural integrity of the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ powder. The $Li_2SiO_3$ coating improved the discharge capacity and rate capability; moreover, the $Li_2SiO_3$-coated electrodes showed reduced impedance values. The surface of the lithium-ion battery cathode is typically attacked by the HF-containing electrolyte, which forms an undesired surface layer that hinders the movement of lithium ions and electrons. However, the $Li_2SiO_3$ coating layer can prevent the undesired side reactions between the cathode surface and the electrolyte, thus enhancing the rate capability and discharge capacity. The thermal stability of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was also improved by the $Li_2SiO_3$ coating.

Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.176-183
    • /
    • 2018
  • In this study, a $Li_2ZrO_3$ coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ (NCA) cathode was applied to an all-solid-state cell employing a sulfide-based solid electrolyte. Sulfide-based solid electrolytes are preferable for all-solid-state cells because of their high ionic conductivity and good softness and elasticity. However, sulfides are very reactive with oxide cathodes, and this reduces the stability of the cathode/electrolyte interface of all-solid-state cells. $Li_2ZrO_3$ is expected to be a suitable coating material for the cathode because it can suppress the undesirable reactions at the cathode/sulfide electrolyte interface because of its good stability and high ionic conductivity. Cells employing $Li_2ZrO_3$ coated NCA showed superior capacity to those employing pristine NCA. Analysis by X-ray photoelectron spectroscopy and electron energy loss spectroscopy confirmed that the $Li_2ZrO_3$ coating layer suppresses the propagation of S and P into the cathode and the reaction between the cathode and the sulfide solid electrolyte. These results show that $Li_2ZrO_3$ coating is promising for reducing undesirable side reactions at the cathode/electrolyte interface of all-solid-state-cells.

Enhanced Stability of LiCoO2 Cathodes in Lithium-ion Batteries Using Surface Modification by Atomic Layer Deposition

  • Jung, Yoon-S.;Cavanagh, Andrew S.;Dillon, Anne C.;Groner, Markus D.;George, Steven M.;Lee, Se-Hee
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.61-65
    • /
    • 2010
  • Ultrathin atomic layer deposition (ALD) coatings were found to enhance the performance of lithium-ion batteries (LIBs). Previous studies have demonstrated that $LiCoO_2$ cathode powders coated with metal oxides with thicknesses of $\sim100-1000{\AA}$ grown using wet chemical techniques improved LIB performance. In this study, $LiCoO_2$ powders were coated with conformal $Al_2O_3$ ALD films with thicknesses of only $\sim3-4{\AA}$ established using 2 ALD cycles. The coated $LiCoO_2$ powders exhibited a capacity retention of 89% after 120 charge-discharge cycles in the 3.3~4.5 V (vs. $Li/Li^+$) range. In contrast, the bare $LiCoO_2$ powders displayed only a 45% capacity retention. This dramatic improvement may result from the ultrathin $Al_2O_3$ ALD film acting to minimize Co dissolution or to reduce surface electrolyte reactions.

Effect of LiCoO2-Coated Cathode on Performance of Molten Carbonate Fuel Cell

  • Kim, Dohyeong;Kim, Hyung Tae;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam;Woo, Ju Young;Han, Haksoo
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권1호
    • /
    • pp.112-119
    • /
    • 2022
  • Molten carbonate fuel cells (MCFCs) are environmentally friendly, large-capacity power generation devices operated at approximately 650℃. If MCFCs are to be commercialized by improving their competitiveness, their cell life should be increased by operating them at lower temperatures. However, a decrease in the operating temperature causes a reduction in the cell performance because of the reduction in the electrochemical reaction rate. The cell performance can be improved by introducing a coating on the cathode of the cell. A coating with a high surface area expands the triple phase boundaries (TPBs) where the gas and electrolyte meet on the electrode surface. And the expansion of TPBs enhances the oxygen reduction reaction of the cathode. Therefore, the cell performance can be improved by increasing the reaction area, which can be achieved by coating nanosized LiCoO2 particles on the cathode. However, although a coating improves the cell performance, a thick coating makes gas difficult to diffuse into the pore of the coating and thus reduces the cell performance. In addition, LiCoO2-coated cathode cell exhibits stable cell performance because the coating layer maintains a uniform thickness under MCFC operating conditions. Therefore, the performance and stability of MCFCs can be improved by applying a LiCoO2 coating with an appropriate thickness on the cathode.

금속산화물 코팅을 통한 박막 $LiCoO_2$양극의 전기화학적 특성 향상 (The Effect of Metal-Oxide Coating on the Electrochemical Properties in Thin-Film $LiCoO_2$ Cathodes)

  • 김혜민;김병수;김용정;조재필;박병우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.124-124
    • /
    • 2003
  • To improve the electrochemical properties of thin-film LiCoO$_2$ cathodes, metal oxides were coated on the LiCoO$_2$ thin films using f sputtering. Galvanostatic charge-discharge experiments showed the enhanced cycling behaviors in the metal-oxide coated LiCoO$_2$ thin films than the uncoated ones. These results are because the metal-oxide coating layer suppresses the degradation of Li-diffusion kinetics during cycling, which is related to the protection of cathode surface from the electrolytes [l-3]. The variation in the metal-oxide coating thickness ranging from 10 to 300 nm did not affect the electrochemical properties. Changes of lattice constants in the coated and bare LiCoO$_2$ thin films at different charged states will also be discussed.

  • PDF