• Title/Summary/Keyword: $L^p$ space

Search Result 433, Processing Time 0.027 seconds

STABILITY OF s-VARIABLE ADDITIVE AND l-VARIABLE QUADRATIC FUNCTIONAL EQUATIONS

  • Govindan, Vediyappan;Pinelas, Sandra;Lee, Jung Rye
    • The Pure and Applied Mathematics
    • /
    • v.29 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • In this paper we investigate the Hyers-Ulam stability of the s-variable additive and l-variable quadratic functional equations of the form $$f\(\sum\limits_{i=1}^{s}x_i\)+\sum\limits_{j=1}^{s}f\(-sx_j+\sum\limits_{i=1,i{\neq}j}^{s}x_i\)=0$$ and $$f\(\sum\limits_{i=1}^{l}x_i\)+\sum\limits_{j=1}^{l}f\(-lx_j+\sum\limits_{i=1,i{\neq}j}^{l}x_i\)=(l+1)$$$\sum\limits_{i=1,i{\neq}j}^{l}f(x_i-x_j)+(l+1)\sum\limits_{i=1}^{l}f(x_i)$ (s, l ∈ N, s, l ≥ 3) in quasi-Banach spaces.

A note on H-closed spaces

  • Nam Jung Wan;Bae Chul Kon;Min Kang-Joo
    • The Mathematical Education
    • /
    • v.14 no.1
    • /
    • pp.11-12
    • /
    • 1975
  • L. Herrington과 P.E. Long이 서술한 H-closed Space에 대해서 성질 즉 H-closed Space의 연속이고 전사인 상은 H-closed Space가 된다는 사실과 그외 몇가지 성질을 조사 했다.

  • PDF

NOTES ON THE BERGMAN PROJECTION TYPE OPERATOR IN ℂn

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2006
  • In this paper, we will define the Bergman projection type operator Pr and find conditions on which the operator Pr is bound-ed on $L^p$(B, dv). By using the properties of the Bergman projection type operator Pr, we will show that if $f{\in}L_a^p$(B, dv), then $(1-{\parallel}{\omega}{\parallel}^2){\nabla}f(\omega){\cdot}z{\in}L^p(B,dv)$. We will also show that if $(1-{\parallel}{\omega}{\parallel}^2)\; \frac{{\nabla}f(\omega){\cdot}z}{},\;{\in}L^p{B,\;dv),\;then\;f{\in}L_a^p(B,\;dv)$.

ON MIXED PRESSURE-VELOCITY REGULARITY CRITERIA FOR THE 3D MICROPOLAR EQUATIONS IN LORENTZ SPACES

  • Kim, Jae-Myoung;Kim, Jaewoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • In present paper, inspired by the recently paper [1], we give the mixed pressure-velocity regular criteria in view of Lorentz spaces for weak solutions to 3D micropolar equations in a half space. Precisely, if (0.1) ${\frac{P}{(e^{-{\mid}x{\mid}^2}+{\mid}u{\mid})^{\theta}}{\in}L^p(0,T;L^{q,{\infty}}({\mathbb{R}}^3_+))$, p, q < ∞, and (0.2) ${\frac{2}{p}}+{\frac{3}{q}}=2-{\theta}$, 0 ≤ θ ≤ 1, then (u, w) is regular on (0, T].

HARMONIC BERGMAN SPACES OF THE HALF-SPACE AND THEIR SOME OPERATORS

  • Kang, Si-Ho;Kim, Ja-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.773-786
    • /
    • 2001
  • On the setting of the half-space of the Euclidean n-space, we consider harmonic Bergman spaces and we also study properties of the reproducing kernel. Using covering lemma, we find some equivalent quantities. We prove that if lim$ lim\limits_{i\rightarrow\infty}\frac{\mu(K_r(zi))}{V(K_r(Z_i))}$ then the inclusion function $I : b^p\rightarrow L^p(H_n, d\mu)$ is a compact operator. Moreover, we show that if f is a nonnegative continuous function in $L^\infty and lim\limits_{Z\rightarrow\infty}f(z) = 0, then T_f$ is compact if and only if f $\in$ $C_{o}$ (H$_{n}$ ).

  • PDF

THE INCLUSION THEOREMS FOR GENERALIZED VARIABLE EXPONENT GRAND LEBESGUE SPACES

  • Aydin, Ismail;Unal, Cihan
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.581-591
    • /
    • 2021
  • In this paper, we discuss and investigate the existence of the inclusion Lp(.),𝜃 (𝜇) ⊆ Lq(.),𝜃 (𝜈), where 𝜇 and 𝜈 are two finite measures on (X, Σ). Moreover, we show that the generalized variable exponent grand Lebesgue space Lp(.),𝜃 (Ω) has a potential-type approximate identity, where Ω is a bounded open subset of ℝd.

A NOTE ON WEIGHTED COMPOSITION OPERATORS ON MEASURABLE FUNCTION SPACES

  • Jbbarzadeh, M.R.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.95-105
    • /
    • 2004
  • In this paper we will consider the weighted composition operators W = $uC_{\tau}$ between $L^{p}$$(X,\sum,\mu$) spaces and Orlicz spaces $L^{\phi}$$(X,\sum,\mu$) generated by measurable and non-singular transformations $\tau$ from X into itself and measurable functions u on X. We characterize the functions u and transformations $\tau$ that induce weighted composition operators between $L^{p}$ -spaces by using some properties of conditional expectation operator, pair (u,${\gamma}$) and the measure space $(X,\sum,\mu$). Also, some other properties of these types of operators will be investigated.

WEAKTYPE $L^1(R^n)$-ESTIMATE FOR CRETAIN MAXIMAL OPERATORS

  • Kim, Yong-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1029-1036
    • /
    • 1997
  • Let ${A_t)}_{t>0}$ be a dilation group given by $A_t = exp(-P log t)$, where P is a real $n \times n$ matrix whose eigenvalues has strictly positive real part. Let $\nu$ be the trace of P and $P^*$ denote the adjoint of pp. Suppose that $K$ is a function defined on $R^n$ such that $$\mid$K(x)$\mid$ \leq k($\mid$x$\mid$_Q)$ for a bounded and decreasing function $k(t) on R_+$ satisfying $k \diamond $\mid$\cdot$\mid$_Q \in \cup_{\varepsilon >0}L^1((1 + $\mid$x$\mid$)^\varepsilon dx)$ where $Q = \int_{0}^{\infty} exp(-tP^*) exp(-tP)$ dt and the norm $$\mid$\cdot$\mid$_Q$ stands for $$\mid$x$\mid$_Q = \sqrt{}, x \in R^n$. For $f \in L^1(R^n)$, define $mf(x) = sup_{t>0}$\mid$K_t * f(x)$\mid$$ where $K_t(X) = t^{-\nu}K(A_{1/t}^* x)$. Then we show that $m$ is a bounded operator of $L^1(R^n) into L^{1, \infty}(R^n)$.

  • PDF