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1. INTRODUCTICK.

In this paper I want to find out the properties which is satisfied in H-closed space. Many characte-
rizations was introduced by Larry L. Herrington and Paul E. Long with weakly continuous mapping
[4] and strongly closed graph, filterbase, family of regular-closed sels and mets [5],

Here I calculate the propeciies that a cortinucus suriectior irange of P-clozeld space is Helowed, &
preimage of continuous bijecticn of H-cloged and Urysohn space is H-closed space, a H-closed subspace
of Hausdroff space is closed and if product space is H-closed space ihen each projecticn space is H-closed
but not for couverse.

Moreover all the notation are based on [1].

2. PRELIMINARY AN} DEFINXTIOMN.

Definitior 2.1. A Hausdroff space X is H-clmsed if for every 1.]ac4) thore oxists 2 finite subf-

ainily {Ux| 1=1,8, -« ,n} such that EJI Cl (U)=X.

Definition 2,2. A mapping f': X—Y is said to be weakly continuous(briefly w.c.) if for each poiut
z&X and each open set VC-Y containing f(z), there exists an vpen set UCX containing « such
that £(U)Cl(V). '

We omitt the other definition. _

lemma 2.3. (Levine). A mapping f: X—Y is w.c. iff for each open set VY,

(V) CInt (F1(CI(V)).

Trooi. [5].

Lemme 2,4 If ¥ is s Uryschn space and f: X—Y is w.c. injection, then X is Hausdorff.

Proof. For any distinct points 21, 226X, we have f{x1)3xf(z2) becousz S is injective, Since Y iy
tevsehn, there exist open sefs Vi and Vo in Y such that f(z))esV, flz)EV2 and Cl(V) NC
(Vo ==¢ . Hence we have Int(f~1(CH{Vy)N Int(f2(C1(V2))=¢ .Since f is w.c., by L.2.3., we
have &NV Cne(f~(CI(V)) for j=1,2. This implies that X is Hausdroff.

3. MAIN PROPERTIES.

Theorem 3.1, A continuous surjection image of H-closed space is H-closed.

Preof. Tet f:X—Y be a continuous surjection and X be a H-closed space, {Us|aed)} be arbitrary
open cover of ¥ then there exists open cover of X with (f~(U.) a4} since f is continuous. On
the other hand since X is H-closed space there exists finite subcover {f-1(Us)|i=1,2, ,n} of

(FV(UL) las4) such that _Ll Cl (f1(Uu)=2X. Thus, for above finite subcover, {Un, Us, +++++- Usn)
is finite subcover of {U:|ac4} and moreover Y=f(X)= f((—}x Cl (1 Ua))CF (_lj 1f" Cl(Uai))=



(F (fjla (Usi) )):_EJl (CI(Uu). Clearly _llf (Ci(Us) Y. Thus g{ Cl(Uw)=Y. This implies Y is H-
closed space.

Theorem 3.2. A preimage of continuous bijection of H-closed -and Urysohn space is H-closed space.

Proof. We put f:X—Y be continuous bijeciion and Y is H-closed and Urysohn space, then by
Lemma 2,4 X is Hausdorff since generally if f is continuous then f is w.c. [4].

If each open cover {U.|acd} of X is the preimage of some open cover of Y of the form {Vi|as4)
Thus {f~1(V.)|a&d} be a cover of X such that f-1(Ve)=U, for each a4, Since Y is H-closed

there exist finite subcover {Vii|i=1,2, s ,n of {Vu|lacd) such that _U Cl (Vo)=Y. For this

finite subcover {f~}(Vu)|{i=1,2,-- ,ntis the finite subcover of {f- l(Va)laEA} and that U Cl

(V) Qf_l(Cl(Vai)):f "(,Ul (CUV)))=FH(Y)=X. Since f ig surjection, Suppose 1f Pr=

X, z Dl(Cl(f'l(Vai))), then res nU‘f—l(Cl(Vai))= f"(L"JlCl(Va,-) =f1(Y)=X since fis surjection.
i= . i= i= . -

f(z) &Y Thus this implies X is H-closed.

Theorem 3.3. A H-closed subspace of Hausdroff space is closed.

Proof. Let X be Hausdroff space and ACX be the H-closed subspace, then as for the relative topology,
we pick any open covering {U(a) NA|as<A} of A.On the other hand, since U(a) is open in Hausdroff
space and A is H-closed space itself, there exists finite subcover (U(ai) NA|i=1,2,+ " ,n of {U(a)
NAla=A) such that LﬂJ1 Cl (U(a) NA)=A. Since finite union of closed sets is closed, thus A is

i=
-closed.

Theorem 3.4. Let {Ys|acsd) be a family of spaces. If T Y, is H-closed space, then Y, is H-closed
for each a4, )

Proof. We take projection p; : TT Y.—Ys, since projection is continuous surjection and by theorem
3.1 Y; is H-closed space.

In above theorem 3.4, converse is not hold by property of theorm 3. 2.
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