A note on H-closed spaces

by

Jung Wan Nam, Chul Kon Bae and Kang-Joe Min

Gyeong Sang National University, Jinju, Korea

1. INTRODUCTION.

In this paper I want to find out the properties which is satisfied in H-closed space. Many characterizations was introduced by Larry L. Herrington and Paul E. Long with weakly continuous mapping [4] and strongly closed graph, filterbase, family of regular-closed sets and net: [5].

Here I calculate the properties that a continuous surjection irrange of H-closed space is H closed, a preimage of continuous bijection of H-closed and Urysohn space is H-closed space, a H-closed subspace of Hausdroff space is closed and if product space is H-closed space then each projection space is H-closed but not for converse.

Moreover all the notation are based on [1].

2. PRELIMINARY AND DEFINITION.

Definition 2.1. A Hausdroff space X is H-closed if for every $\{U_{\alpha} | \alpha \in A\}$ there exists a finite subfamily $\{U_{\alpha i} | i=1, 2, \dots, n\}$ such that $\bigcup_{i=1}^n Cl(U_{\alpha i}) = X$.

Definition 2.2. A mapping $f: X \to Y$ is said to be weakly continuous (briefly w.c.) if for each point $x \in X$ and each open set $V \subset Y$ containing f(x), there exists an open set $U \subset X$ containing x such that $f(U) \subset Cl(V)$.

We omitt the other definition.

Lemma 2.3. (Levine). A mapping $f: X \rightarrow Y$ is w.c. iff for each open set $V \subset Y$, $f^{-1}(V) \subset Int(f^{-1}(Cl(V)))$.

Frooi. [3].

Lemma 2.4 If Y is a Uryachn space and $f: X \rightarrow Y$ is w.c. injection, then X is Hausdorff.

Proof. For any distinct points $x_1, x_2 \in X$, we have $f(x_1) \neq f(x_2)$ becouse f is injective. Since Y is Uryschn, there exist open sets V_1 and V_2 in Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $Cl(V_1) \cap Cl(V_2) = \phi$. Hence we have $Int(f^{-1}(Cl(V_1))) \cap Int(f^{-1}(Cl(V_2))) = \phi$. Since f is w.c., by L, 2.3., we have $x_j \in f^{-1}(V_j) \subset Int(f^{-1}(Cl(V_j)))$ for j=1,2. This implies that X is Hausdroff.

3. MAIN PROPERTIES.

Theorem 3.1. A continuous surjection image of H-closed space is H-closed.

Proof. Let $f: X \to Y$ be a continuous surjection and X be a H-closed space, $\{U_{\alpha} | \alpha \in \Delta\}$ be arbitrary open cover of Y then there exists open cover of X with $\{f^{-1}(\bigcup_{\alpha}) | \alpha \in \Delta\}$ since f is continuous. On the other hand since X is H-closed space there exists finite subcover $\{f^{-1}(U_{\alpha i}) | i=1, 2, \dots, n\}$ of $\{f^{-1}(U_{\alpha}) | \alpha \in \Delta\}$ such that $\bigcup_{i=1}^{n} \operatorname{Cl}(f^{-1}(U_{\alpha i})) = X$. Thus, for above finite subcover, $\{U_{\alpha 1}, U_{\alpha 2}, \dots, U_{\alpha n}\}$ is finite subcover of $\{U_{\alpha} | \alpha \in \Delta\}$ and moreover $Y = f(X) = f(\bigcup_{i=1}^{n} \operatorname{Cl}(f^{-1}(U_{\alpha i}))) \subset f(\bigcup_{i=1}^{n} f^{-1}(\operatorname{Cl}(U_{\alpha i}))) = f(\bigcup_{i=1}^{n} \operatorname{Cl}(U_{\alpha i})) \subset f(\bigcup_{i=1}^{n} f^{-1}(\operatorname{Cl}(U_{\alpha i})))$

 $(f^{-1}(\overset{n}{U}Cl\ (U_{\alpha i})))=\overset{n}{\underset{i=1}{\cup}}\ (Cl(U_{\alpha i})).$ Clearly $\overset{n}{U}\ (Cl(U_{\alpha i}))\subset Y.$ Thus $\overset{n}{U}\ Cl(U_{\alpha i})=Y.$ This implies Y is H-closed space.

Theorem 3.2. A preimage of continuous bijection of H-closed and Urysohn space is H-closed space. Proof. We put $f: X \rightarrow Y$ be continuous bijection and Y is H-closed and Urysohn space, then by Lemma 2.4 X is Hausdorff since generally if f is continuous then f is w.c. [4].

If each open cover $\{U_{\alpha} | \alpha \in \Delta\}$ of X is the preimage of some open cover of Y of the form $\{V_{\alpha} | \alpha \in \Delta\}$ Thus $\{f^{-1}(V_{\alpha}) | \alpha \in \Delta\}$ be a cover of X such that $f^{-1}(V_{\alpha}) = U_{\alpha}$ for each $\alpha \in \Delta$. Since Y is H-closed there exist finite subcover $\{V_{\alpha i} | i=1, 2, \dots, n\}$ of $\{V_{\alpha} | \alpha \in \Delta\}$ such that $\bigcup_{i=1}^{n} \operatorname{Cl}(V_{\alpha i}) = Y$. For this finite subcover $\{f^{-1}(V_{\alpha i}) | i=1, 2, \dots, n\}$ is the finite subcover of $\{f^{-1}(V_{\alpha}) | \alpha \in \Delta\}$ and that $\bigcup_{i=1}^{n} \operatorname{Cl}(f^{-1}(V_{\alpha i})) = \int_{i=1}^{n} f^{-1}(\operatorname{Cl}(V_{\alpha i})) = f^{-1}(\int_{i=1}^{n} (\operatorname{Cl}(V_{\alpha i})) = f^{-1}(Y) = X$. Since f is surjection, Suppose if $x \in X$, $x \in \bigcup_{i=1}^{n} (\operatorname{Cl}(f^{-1}(V_{\alpha i})))$, then $x \in \bigcup_{i=1}^{n} f^{-1}(\operatorname{Cl}(V_{\alpha i})) = f^{-1}(\bigcup_{i=1}^{n} \operatorname{Cl}(V_{\alpha i}) = f^{-1}(Y) = X$ since f is surjection. $f(x) \in Y$ Thus this implies X is H-closed.

Theorem 3.3. A H-closed subspace of Hausdroff space is closed.

Proof. Let X be Hausdroff space and $A \subset X$ be the H-closed subspace, then as for the relative topology, we pick any open covering $\{U(a) \cap A \mid a \in A\}$ of A. On the other hand, since U(a) is open in Hausdroff space and A is H-closed space itself, there exists finite subcover $\{U(a_i) \cap A \mid i=1, 2, \dots, n\}$ of $\{U(a) \cap A \mid a \in A\}$ such that $\bigcup_{i=1}^{n} Cl (U(a_i) \cap A) = A$. Since finite union of closed sets is closed, thus A is closed.

Theorem 3.4. Let $(Y_{\alpha}|\alpha \in \Delta)$ be a family of spaces. If $\prod_{\alpha} Y_{\alpha}$ is H-closed space, then Y_{α} is H-closed for each $\alpha \in \Delta$.

Proof. We take projection $p_{\beta}: \prod_{\alpha} Y_{\alpha} \to Y_{\beta}$, since projection is continuous surjection and by theorem 3.1 Y_{β} is H-closed space.

In above theorem 3.4, converse is not hold by property of theorm 3.2.

References

- [1] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966.
- (2) N. Bourbaki, General topology, Part 1, Addison-Wesley, Reading, Mass., 1966
- (3) N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly 1961
- [4] T. Noiri, On weakly continuous mappings, Proc. of the A.M.S., Vol.46, No.1, October 1974
- (5) L.L. Herrington and P.E, Long, Characterizations of H-closed spaces, Proc. of the A.M.S., Vol. 48, No.2, April 1975.

요 약

남정완, 배철곤, 민강주

L.L. Herrington 과 P.E. Long 이 서술한 H-closed Space 에 대해서 성질 즉 H-closed Space 의 연속 이고 전사인 상은 H-closed Space 가 된다는 사실과 그의 몇가지 성질을 조사 했다.