• 제목/요약/키워드: $K_{Ca}$ channels

검색결과 360건 처리시간 0.019초

Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s

  • Ko, Juyeon;Myeong, Jongyun;Yang, Dongki;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.133-140
    • /
    • 2017
  • Conflicting evidence has been obtained regarding whether transient receptor potential cation channels (TRPC) are store-operated channels (SOCs) or receptor-operated channels (ROCs). Moreover, the Ca/Na permeability ratio differs depending on whether the current-voltage (I-V) curve has a doubly rectifying shape or inward rectifying shape. To investigate the calcium permeability of TRPC4 channels, we attached GCaMP6s to TRPC4 and simultaneously measured the current and calcium signals. A TRPC4 specific activator, (-)-englerin A, induced both current and calcium fluorescence with the similar time course. Muscarinic receptor stimulator, carbachol, also induced both current and calcium fluorescence with the similar time course. By forming heteromers with TRPC4, TRPC1 significantly reduced the inward current with outward rectifying I-V curve, which also caused the decrease of calcium fluorescence intensity. These results suggest that GCaMP6s attached to TRPC4 can detect slight calcium changes near TRPC4 channels. Consequently, TRPC4-GCaMP6s can be a useful tool for testing the calcium permeability of TRPC4 channels.

Ginseng Gintonin Activates the Human Cardiac Delayed Rectifier K+ Channel: Involvement of Ca2+/Calmodulin Binding Sites

  • Choi, Sun-Hye;Lee, Byung-Hwan;Kim, Hyeon-Joong;Jung, Seok-Won;Kim, Hyun-Sook;Shin, Ho-Chul;Lee, Jun-Hee;Kim, Hyoung-Chun;Rhim, Hyewhon;Hwang, Sung-Hee;Ha, Tal Soo;Kim, Hyun-Ji;Cho, Hana;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • 제37권9호
    • /
    • pp.656-663
    • /
    • 2014
  • Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits $[Ca^{2+}]_i$ transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier $K^+$ ($I_{Ks}$) channel is a cardiac $K^+$ channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating $I_{Ks}$ channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human $I_{Ks}$ channel activity by expressing human $I_{Ks}$ channels in Xenopus oocytes. We found that gintonin enhances $I_{Ks}$ channel currents in concentration- and voltage-dependent manners. The $EC_{50}$ for the $I_{Ks}$ channel was $0.05{\pm}0.01{\mu}g/ml$. Gintonin-mediated activation 1 of the $I_{Ks}$ channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an $IP_3$ receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the $I_{Ks}$ channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 $[Ca^{2+}]_i$/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on $I_{Ks}$ channel. However, gintonin had no effect on hERG $K^+$ channel activity. These results show that gintonin-mediated enhancement of $I_{Ks}$ channel currents is achieved through binding of the $[Ca^{2+}]_i$/CaM complex to the C terminus of KCNQ1 subunit.

Octyl Gallate Inhibits ATP-induced Intracellular Calcium Increase in PC12 Cells by Inhibiting Multiple Pathways

  • Guo, Yujie;Hong, Yi-Jae;Jang, Hyun-Jong;Kim, Myung-Jun;Rhie, Duck-Joo;Jo, Yang-Hyeok;Hahn, Sang-June;Yoon, Shin-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2010
  • Phenolic compounds affect intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) signaling. The study examined whether the simple phenolic compound octyl gallate affects ATP-induced $Ca^{2+}$ signaling in PC12 cells using fura-2-based digital $Ca^{2+}$ imaging and whole-cell patch clamping. Treatment with ATP ($100\;{\mu}M$) for 90 s induced increases in $[Ca^{2+}]_i$ in PC12 cells. Pretreatment with octyl gallate (100 nM to $20\;{\mu}M$) for 10 min inhibited the ATP-induced $[Ca^{2+}]_i$ response in a concentration-dependent manner ($IC_{50}=2.84\;{\mu}M$). Treatment with octyl gallate ($3\;{\mu}M$) for 10 min significantly inhibited the ATP-induced response following the removal of extracellular $Ca^{2+}$ with nominally $Ca^{2+}$-free HEPES HBSS or depletion of intracellular $Ca^{2+}$ stores with thapsigargin ($1\;{\mu}M$). Treatment for 10 min with the L-type $Ca^{2+}$ channel antagonist nimodipine ($1\;{\mu}M$) significantly inhibited the ATP-induced $[Ca^{2+}]_i$ increase, and treatment with octyl gallate further inhibited the ATP-induced response. Treatment with octyl gallate significantly inhibited the $[Ca^{2+}]_i$ increase induced by 50 mM KCI. Pretreatment with protein kinase C inhibitors staurosporin (100 nM) and GF109203X (300 nM), or the tyrosine kinase inhibitor genistein ($50\;{\mu}M$) did not significantly affect the inhibitory effects of octyl gallate on the ATP-induced response. Treatment with octyl gallate markedly inhibited the ATP-induced currents. Therefore, we conclude that octyl gallate inhibits ATP-induced $[Ca^{2+}]_i$ increase in PC12 cells by inhibiting both non-selective P2X receptor-mediated influx of $Ca^{2+}$ from extracellular space and P2Y receptor-induced release of $Ca^{2+}$ from intracellular stores in protein kinase-independent manner. In addition, octyl gallate inhibits the ATP-induced $Ca^{2+}$ responses by inhibiting the secondary activation of voltage-gated $Ca^{2+}$ channels.

The Influences of G Proteins, $Ca^{2+}$, and $K^+$ Channels on Electrical Field Stimulation in Cat Esophageal Smooth Muscle

  • Park, Jun-Hong;Kim, Hyun-Sik;Park, Sun-Young;Im, Chae-Uk;Jeong, Ji-Hoon;Kim, In-Kyeom;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.393-400
    • /
    • 2009
  • NO released by myenteric neurons controls the off contraction induced by electrical field stimulation (EFS) in distal esophageal smooth muscle, but in the presence of nitric oxide synthase (NOS) inhibitor, L-NAME, contraction by EFS occurs at the same time. The authors investigated the intracellular signaling pathways related with G protein and ionic channel EFS-induced contraction using cat esophageal muscles. EFS-induced contractions were significantly suppressed by tetrodotoxin ($1\;{\mu}M$) and atropine ($1\;{\mu}M$). Furthermore, nimodipine inhibited both on and off contractions by EFS in a concentration dependent meaner. The characteristics of 'on' and 'off contraction and the effects of G-proteins, phospholipase, and $K^+$ channel on EFS-induced contraction in smooth muscle were also investigated. Pertussis toxin (PTX, a $G_i$ inactivator) attenuated both EFS-induced contractions. Cholera toxin (CTX, $G_s$ inactivator) also decreased the amplitudes of EFS-induced off and on contractions. However, phospholipase inhibitors did not affect these contractions. Pinacidil (a $K^+$ channel opener) decreased these contractions, and tetraethylammonium (TEA, ${K^+}_{Ca}$ channel blocker) increased them. These results suggest that EFS-induced on and off contractions can be mediated by the activations Gi or Gs proteins, and that L-type $Ca^{2+}$ channel may be activated by G-protein ${\alpha}$ subunits. Furthermore, ${K^+}_{Ca^-}$ channel involve in the depolarization of esophageal smooth muscle. Further studies are required to characterize the physiological regulation of $Ca^{2+}$ channel and to investigate the effects of other $K^+$ channels on EFS-induced on and off contractions.

Calcium and bioenergetics: from endoplasmic reticulum to mitochondria

  • Lee, Duk-Gyu;Michalak, Marek
    • Animal cells and systems
    • /
    • 제16권4호
    • /
    • pp.269-273
    • /
    • 2012
  • Controlling metabolism throughout life is a necessity for living creatures, and perturbation of energy balance elicits disorders such as type-2 diabetes mellitus and cardiovascular disease. $Ca^{2+}$ plays a key role in regulating energy generation. $Ca^{2+}$ homeostasis of the endoplasmic reticulum (ER) lumen is maintained through the action of $Ca^{2+}$ channels and the $Ca^{2+}$ ATPase pump. Once released from the ER, $Ca^{2+}$ is taken up by mitochondria where it facilitates energy metabolism. Mitochondrial $Ca^{2+}$ serves as a key metabolic regulator and determinant of cell fate, necrosis, and/or apoptosis. Here, we focus on $Ca^{2+}$ transport from the ER to mitochondria, and $Ca^{2+}$-dependent regulation of mitochondrial energy metabolism.

Regulation of $Ca^{2+}$ Influx by Membrane Potential in Microglia

  • Lee, Jungsun;Uhm, Dae-Yong;Sungkwon Chung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.39-39
    • /
    • 2002
  • Microglia are known to have an important function as brain macrophage during immunological processes, oncogenesis, and regeneration in the central nervous system (CNS). A wide variety of ion channels have been identified and characterized in microglia including inward rectifier $K^{+}$ channel (Kir), voltage dependent $K^{+}$ channel (Kv), $Ca^{2+}$-release activated $Ca^{2+}$ channel (CRAC).(omitted)

  • PDF

Molecular Cloning and Characterization of Neuronal $\beta$-subunit of Large-Conductance$Ca^{2+}$-activated $K^+$ Channels from Rat Brain

  • Heo, Moon-Sun;Ha, Tal-Soo;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.38-38
    • /
    • 2001
  • We cloned the cDNA encoding the neuron-specific $\beta$-subunit ($\beta$4) of large-conductance calcium-activated potassium channels from rat brain and determined the DNA sequences of the entire coding region (GenBank accession; AY028605). The deduced amino acid sequences of r$\beta$4, 210 amino acids in length, are closely related to the $BK_{Ca}$ $\beta$4 subunits of other species but show only limited sequence homology to other $\beta$-subunits, $\beta$1-$\beta$3.(omitted)d)

  • PDF

Channel Allocation Strategies for Interference-Free Multicast in Multi-Channel Multi-Radio Wireless Mesh Networks

  • Yang, Wen-Lin;Hong, Wan-Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권2호
    • /
    • pp.629-648
    • /
    • 2012
  • Given a video stream delivering system deployed on a multicast tree, which is embedded in a multi-channel multi-radio wireless mesh network, our problem is concerned about how to allocate interference-free channels to tree links and maximize the number of serviced mesh clients at the same time. In this paper, we propose a channel allocation heuristic algorithm based on best-first search and backtracking techniques. The experimental results show that our BFB based CA algorithm outperforms previous methods such as DFS and BFS based CA methods. This superiority is due to the backtracking technique used in BFB approach. It allows previous channel-allocated links to have feasibility to select the other eligible channels when no conflict-free channel can be found for the current link during the CA process. In addition to that, we also propose a tree refinement method to enhance the quality of channel-allocated trees by adding uncovered destinations at the cost of deletion of some covered destinations. Our aim of this refinement is to increase the number of serviced mesh clients. According to our simulation results, it is proved to be an effective method for improving multicast trees produced by BFB, BFS and DFS CA algorithms.