Browse > Article
http://dx.doi.org/10.1080/19768354.2012.685181

Calcium and bioenergetics: from endoplasmic reticulum to mitochondria  

Lee, Duk-Gyu (Department of Biochemistry, University of Alberta)
Michalak, Marek (Department of Biochemistry, University of Alberta)
Publication Information
Animal cells and systems / v.16, no.4, 2012 , pp. 269-273 More about this Journal
Abstract
Controlling metabolism throughout life is a necessity for living creatures, and perturbation of energy balance elicits disorders such as type-2 diabetes mellitus and cardiovascular disease. $Ca^{2+}$ plays a key role in regulating energy generation. $Ca^{2+}$ homeostasis of the endoplasmic reticulum (ER) lumen is maintained through the action of $Ca^{2+}$ channels and the $Ca^{2+}$ ATPase pump. Once released from the ER, $Ca^{2+}$ is taken up by mitochondria where it facilitates energy metabolism. Mitochondrial $Ca^{2+}$ serves as a key metabolic regulator and determinant of cell fate, necrosis, and/or apoptosis. Here, we focus on $Ca^{2+}$ transport from the ER to mitochondria, and $Ca^{2+}$-dependent regulation of mitochondrial energy metabolism.
Keywords
$Ca^{2+}$ homeostasis; receptor; endoplasmic reticulum; mitochondria; energy metabolism;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kirichok Y, Krapivinsky G, Clapham DE. 2004. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 427:360-364.   DOI
2 Lebeche D, Lucero HA, Kaminer B. 1994. Calcium binding properties of rabbit liver protein disulfide isomerase. Biochem Biophys Res Commun. 202:556-561.   DOI
3 Lewis RS. 2007. The molecular choreography of a storeoperated calcium channel. Nature. 446:284-287.   DOI
4 Lievremont JP, Rizzuto R, Hendershot L, Meldolesi J. 1997. BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of $Ca^{2+}$. J Biol Chem. 272:30873-30879.   DOI
5 McCormack JG, Halestrap AP, Denton RM. 1990. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 70:391-425.   DOI
6 Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. 2009. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 417:651-666.   DOI
7 Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, Krause R, Papp S, De Smedt H, Parys JB, Muller-EsterlW, et al. 2001. Functional specialization of calreticulin domains. J Cell Biol. 154:961-972.   DOI
8 Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK. 2010. MICU1 encodes a mitochondrial EF hand protein required for $Ca^{2+}$ uptake. Nature. 467:291-296.   DOI
9 Prins D, Groenendyk J, Touret N, Michalak M. 2011. Modulation of STIM1 and capacitative $Ca^{2+}$ entry by the endoplasmic reticulum luminal oxidoreductase ERp57. EMBO Rep. 12:1182-1188.   DOI
10 Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE, Rizzuto R. 2002. Recombinant expression of the voltagedependent anion channel enhances the transfer of $Ca^{2+}$ microdomains to mitochondria. J Cell Biol. 159:613-624.   DOI
11 Rizzuto R, Simpson AW, Brini M, Pozzan T. 1992. Rapid changes of mitochondrial $Ca^{2+}$ revealed by specifically targeted recombinant aequorin. Nature. 358:325-327.   DOI
12 Argon Y, Simen BB. 1999. GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol. 10:495-505.   DOI
13 Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, Demaurex N. 2002. Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem. 277:46696-46705.   DOI
14 AshbyMC, TepikinAV. 2001. ER calcium and the functions of intracellular organelles. Semin Cell Dev Biol. 12:11-17.   DOI
15 Baksh S, Michalak M. 1991. Expression of calreticulin in Escherichia coli and identification of its $Ca^{2+}$ binding domains. J Biol Chem. 266:21458-21465.
16 Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly- Dyson E, Di Lisa F, Forte MA. 2006. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273:2077-2099.   DOI
17 Bygrave FL, Benedetti A. 1996. What is the concentration of calcium ions in the endoplasmic reticulum? Cell Calcium. 19:547-551.   DOI
18 Carafoli E. 2003. Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem Sci. 28:175-181.   DOI
19 Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R. 2006. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial $Ca^{2+}$ channels. J Cell Biol. 175:901-911.   DOI
20 Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA,Wagner SL, Cahalan MD, et al. 2005. STIM1, an essential and conserved component of store-operated $Ca^{2+}$ channel function. J Cell Biol. 169:435-445.   DOI
21 Szydlowska K, Tymianski M. 2010. Calcium, ischemia and excitotoxicity. Cell Calcium. 47:122-129.   DOI
22 Tan W, Colombini M. 2007. VDAC closure increases calcium ion flux. Biochim Biophys Acta. 1768:2510-2515.   DOI
23 Yule DI, Betzenhauser MJ, Joseph SK. 2010. Linking structure to function: recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium. 47:469-479.   DOI
24 Fill M, Copello JA. 2002. Ryanodine receptor calcium release channels. Physiol Rev. 82:893-922.   DOI
25 Carafoli E, Brini M. 2000. Calcium pumps: structural basis for and mechanism of calcium transmembrane transport. Curr Opin Chem Biol. 4:152-161.   DOI
26 Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, et al. 2010. Essential regulation of cell bioenergetics by constitutive InsP3 receptor $Ca^{2+}$ transfer to mitochondria. Cell. 142:270-283.   DOI
27 Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB. 2011. The IP3 receptormitochondria connection in apoptosis and autophagy. Biochim Biophys Acta. 1813:1003-1013.   DOI
28 Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T. 2010. $Ca^{2+}$ hot spots on the mitochondrial surface are generated by $Ca^{2+}$ mobilization from stores, but not by activation of storeoperated $Ca^{2+}$ channels. Mol Cell. 38:280-290.   DOI
29 Greber UF, Gerace L. 1995. Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J Cell Biol. 128:5-14.   DOI
30 Guo L, Lynch J, Nakamura K, Fliegel L, Kasahara H, Izumo S, Komuro I, Agellon LB, Michalak M. 2001. COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development. J Biol Chem. 276:2797-2801.   DOI
31 Hertle DN, Yeckel MF. 2007. Distribution of inositol-1,4,5- trisphosphate receptor isotypes and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience. 150:625-638.   DOI
32 Hewavitharana T, Deng X, Soboloff J, Gill DL. 2007. Role of STIM and Orai proteins in the store-operated calcium signaling pathway. Cell Calcium. 42:173-182.   DOI
33 Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R. 1999. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA. 96:13807-13812.   DOI
34 Kelley DE, He J, Menshikova EV, Ritov VB. 2002. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 51:2944-2950.   DOI