• 제목/요약/키워드: $HfO_2/Al_2O_3$

검색결과 160건 처리시간 0.027초

$BCl_3$/Ar 플라즈마에서 $Cl_2$ 첨가에 따른 TiN 박막의 식각 특성 (Etch characteristics of TiN thin film adding $Cl_2$ in $BCl_3$/Ar Plasma)

  • 엄두승;강찬민;양설;김동표;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.168-168
    • /
    • 2008
  • Dimension of a transistor has rapidly shrunk to increase the speed of device and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate dioxide layer and low conductivity characteristic of poly-Si gate in nano-region. To cover these faults, study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$, and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-Si gate is not compatible with high-k materials for gate-insulator. Poly Si gate with high-k material has some problems such as gate depletion and dopant penetration problems. Therefore, new gate structure or materials that are compatible with high-k materials are also needed. TiN for metal/high-k gate stack is conductive enough to allow a good electrical connection and compatible with high-k materials. According to this trend, the study on dry etching of TiN for metal/high-k gate stack is needed. In this study, the investigations of the TiN etching characteristics were carried out using the inductively coupled $BCl_3$-based plasma system and adding $Cl_2$ gas. Dry etching of the TiN was studied by varying the etching parameters including $BCl_3$/Ar gas mixing ratio, RF power, DC-bias voltage to substrate, and $Cl_2$ gas addition. The plasmas were characterized by optical emission spectroscopy analysis. Scanning electron microscopy was used to investigate the etching profile.

  • PDF

유도결합플라즈마를 이용한 TaN 박막의 식각 특성 (Etching Property of the TaN Thin Film using an Inductively Coupled Plasma)

  • 엄두승;우종창;김동표;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF

리모트 플라즈마 원자층 증착 기술 및 high-k 응용

  • Jeon, Hyeong-Tag;Kim, Hyung-Chul
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.6.1-6.1
    • /
    • 2010
  • 원자층 증착 기술 (Atomic Layer Deposition)은 기판 표면에서 한 원자층의 화학적 흡착 및 탈착을 이용한 nano-scale 박막 증착 기술이기 때문에, 표면 반응제어가 우수하며 박막의 물리적 성질의 재현성이 우수하고, 대면적에서도 균일한 두께의 박막 형성이 가능하며 우수한 계단 도포성을 확보 할 수 있다. 최근 ALD에 의한 박막증착 방법 중 플라즈마를 이용한 ALD 증착 방법에 대한 다양한 연구가 진행되고 있다. 플라즈마는 반응성이 좋은 이온과 라디컬을 생성하여 소스간 반응성을 좋게 하여, 소스 선택의 폭을 넓어지게 하고, 박막의 성질을 좋게 하며, 생산성을 높일 수 있는 장점이 있다. 그러나 플라즈마를 사용함으로써 플라즈마 내에 이온들이 가속되서 박막 증착 중에 기판 및 박막에 손상을 입혀 박막 특성을 열화 시킬 가능성이 있다. 따라서 플라즈마 발생 영역을 기판으로부터 멀리 떨어뜨린 원거리 플라즈마 원자층 공정이 개발 되었다. 이 기술은 플라즈마에서 생성된 ion이 기판이나 박막에 닫기 전에 전자와 재결합 되거나 공정 chamber에서 소멸하여 그 영향을 최소하고 반응성이 좋은 라디칼과의 반응만을 유도하여 향상된 막질을 얻을 수 있도록 하였다. 따라서 이 원거리 플라즈마 원자층 증착기술은 나노 테크놀러지 소자 개발하기 위한 나노 박막 기술에 있어서 그 활용이 점점 확대될 것이다. 그 적용으로써 리모트 플라즈마 원자층 증착 방법을 이용한 고유전 물질 개발이 있다. 반도체 소자의 고집적화 및 고속화가 요구됨에 따라 집적회로의 크기를 혁신적으로 축소하여 스위칭 속도(switching speed)를 증가시키고, 전력손실 (power dissipation)을 줄이려는 시도가 이루어지고 있다. 그 중 하나로 고유전율 절연막은 트렌지스터 소자의 스케일링 과정에 수반하여 커지는 게이트 누설 전류를 억제하기 위한 목적으로 도입되었다. 유전율이 크면 동일한 capacitance를 내는데 필요한 물리적인 두께를 늘릴 수 있어 전자의 tunneling을 억제할 수 있고 전력손실을 줄일 수 있기 때문이다. 이와 같은 고유전율 물질이 게이트 산화막으로 사용되기 위해서 높은 유전상수 열역학적 안정성, 낮은 계면 전하밀도, 낮은 EOT, 전극 물질과의 양립성 등의 특성이 요구되는데, 이에 따라 많은 유전물질에 대한 연구가 진행되었다. 기존 gata oxide를 대체하기 위한 가장 유력한 후보 재료로 주목 받고 있는 high-k 물질들로는 Al2O3, HfO2, ZrO2, La2O3 등이 있다. 본 발표에서는 ALD의 종류에 따른 기술을 소개하고 그 응용으로 고유전율 물질 개발 연구 (고유전율 산화물 박막의 증착, 고유전율 산화물의 열적 안정성 평가, Flatband 매카니즘 규명, 전기적 물리적 특성 분석)에 대해서 발표 하고자 한다.

  • PDF

바이오 센서 적용을 위한 수직형 이중게이트 InGaAs TFET의 게이트 열화 현상 분석 (Constant Voltage Stress (CVS) and Hot Carrier Injection (HCI) Degradations of Vertical Double-date InGaAs TFETs for Bio Sensor Applications)

  • 백지민;김대현
    • 센서학회지
    • /
    • 제31권1호
    • /
    • pp.41-44
    • /
    • 2022
  • In this study, we have fabricated and characterized vertical double-gate (DG) InGaAs tunnel field-effect-transistors (TFETs) with Al2O3/HfO2 = 1/5 nm bi-layer gate dielectric by employing a top-down approach. The device exhibited excellent characteristics including a minimum subthreshold swing of 60 mV/decade, a maximum transconductance of 141 µS/㎛, and an on/off current ratio of over 103 at 20℃. Although the TFETs were fabricated using a dry etch-based top-down approach, the values of DIBL and hysteresis were as low as 40 mV/V and below 10 mV, respectively. By evaluating the effects of constant voltage and hot carrier injection stress on the vertical DG InGaAs TFET, we have identified the dominant charge trapping mechanism in TFETs.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • 윤원섭;이상우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Statistical Study For The prediction of pKa Values of Substituted Benzaldoxime Based on Quantum Chemicals Methods

  • Al-Hyali, Emad A.S.;Al-Azzawi, Nezar A.;Al-Abady, Faiz M.H.
    • 대한화학회지
    • /
    • 제55권5호
    • /
    • pp.733-740
    • /
    • 2011
  • Multiple regression analysis was used for the calculation of pKa values of 15 substituted benzaldoximes by using various types of descriptors as parameters. These descriptors are based on quantum mechanical treatments. They were derived by employing semi-empirical calculation represented by the PM3 model and an Abinitio method expressed by Hartree-Fock(HF) model performed at the 6-311 G(d, p) level of theory. The parameters tested for their ability to represent the variations observed in the experimental pKa(s) are atomic and structural properties including Muliken charges on the atoms of hydroxyl group and C=N bond, the angle $C_6-C_1-C_7$, and length of O-H bond. Molecular properties are also used like energies of HOMO and LUMO, hardness(${\eta}$), chemical potential(${\mu}$), total energy(TE), dipole of molecule(DM), and electrophilicity index(W). The relation between pKa values and each of these parameters of the studied compounds is investigated. Depending on these relations, two sets of parameters were constructed for comparison between the PM3 and HF methods. The results obtained favor the Abinitio method for such applications although both models proved to have high predictive power and have sufficient reliability to describe the effect of substituents on pKa values of benzaldoxime compounds under consideration which is clear from the values of correlation coefficient $R^2$ obtained and the consistency between the experimental and the calculated values.

AZ91 마그네슘 합금의 PEO 피막 형성거동에 미치는 HF전처리의 영향 (Effect of pre-treatment of AZ91 Mg alloy in HF solution on PEO film formation behavior)

  • 권두영;송풍근;문성모
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.184-193
    • /
    • 2021
  • This study demonstrates formation behavior and morphological changes of PEO (Plasma Electrolytic Oxidation) films on AZ91 Mg alloy as a function of pre-treatment time in 1 M HF solution at 25 ± 1 ℃. The electrochemical behavior and morphological changes of AZ91 Mg alloy in the pre-treatment solution were also investigated with pre-treatment time. The PEO films were formed on the pre-treated AZ91 Mg alloy specimen by the application of anodic current 100 mA/cm2 of 300 Hz AC in 0.1 M NaOH + 0.4 M Na2SiO3 solution. Vigorous generation of hydrogen bubbles were observed upon immersion in the pre-treatment solution and its generation rate decreased with immersion time. It was also found that 𝛽-Mg17Al12 in AZ91 Mg alloy was dissolved and a protective thin film of MgF2 was formed on the AZ91 Mg alloy surface during the pre-treatment process in the 1 M HF solution. PEO film did not grow on the AZ91 Mg alloy specimen when the surface was not pre-treated and irregular PEO films with nodular defects were formed for the specimens pre-treated up to 1 min. Uniform PEO films were formed when the AZ91 Mg alloy specimen was pre-treated more than 3 min. The growth rate of PEO films on AZ91 Mg alloy increased significantly with increasing pre-treatment time.

The effects of different surface treatments on the shear bond strengths of two dual-cure resin cements to CAD/CAM restorative materials

  • Turker, Nurullah;Buyukkaplan, Ulviye Sebnem;Basar, Ebru Kaya;Ozarslan, Mehmet Mustafa
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권4호
    • /
    • pp.189-196
    • /
    • 2020
  • PURPOSE. The aim of the present study was to investigate the effects of surface treatments on the bond strengths between polymer-containing restorative materials and two dual-cure resin cements. MATERIALS AND METHODS. In the present study, rectangular samples prepared from Lava Ultimate (LU) and Vita Enamic (VE) blocks were used. The specimen surfaces were treated using CoJet sandblasting, 50 ㎛ Al2O3 sandblasting, % 9 HF (hydrofluoric) acid, ER,Cr:YSGG laser treatment, and Z-Prime. Dual-cure resin cements (TheraCem and 3M RelyX U 200) were applied on each specimen's treated surface. A micro-tensile device was used to evaluate shear bond strength. Statistical analysis was performed using the SAS 9.4v3. RESULTS. While the bond strength using TheraCem with LU or VE was not statistically significant (P=.164), the bond strength using U200 with VE was statistically significant (P=.006). In the TheraCem applied VE groups, Z-Prime and HF acid were statistically different from CoJet, Laser, and Sandblast groups. In comparison of TheraCem used LU group, there was a statistically significant difference between HF acid and other surface treatments. CONCLUSION. The bonding performance between the restorative materials and cements were material type-dependent and surface treatment had a large effect on the bond strength. Within the limitations of the study, the use of both U200 and TheraCem may be suggested if Z-prime was applied to intaglio surfaces of VE. The cementation of LU using TheraCem is suitable after HF acid conditioning of the restoration surfaces.

포토마스크 펠리클 제조를 위한 Aluminum Frame 표면 세정공정 연구 (Study on Aluminum Frame Surface Cleaning Process for Photomask Pellicle Fabrication)

  • 김현태;김향란;김민수;이준;장성해;최인찬;박진구
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.462-467
    • /
    • 2015
  • Pellicle is defined as a thin transparent film stretched over an aluminum (Al) frame that is glued on one side of a photomask. As semiconductor devices are pursuing higher levels of integration and higher resolution patterns, the cleaning of the Al flame surface is becoming a critical step because the contaminants on the Al flame can cause lithography exposure defects on the wafers. In order to remove these contaminants from the Al frame, a highly concentrated nitric acid ($HNO_3$) solution is used. However, it is difficult to fully remove them, which results in an increase in the Al surface roughness. In this paper, the pellicle frame cleaning is investigated using various cleaning solutions. When the mixture of sulfuric acid ($H_2SO_4$), hydrofluoric acid (HF), hydrogen peroxide ($H_2O_2$), and deionized water with ultrasonic is used, a high cleaning efficiency is achieved without $HNO_3$. Thus, this cleaning process is suitable for Al frame cleaning and it can also reduce the use of chemicals.

Production of uranium tetrafluoride from the effluent generated in the reconversion via ammonium uranyl carbonate

  • Neto, Joao Batista Silva;de Carvalho, Elita Fontenele Urano;Garcia, Rafael Henrique Lazzari;Saliba-Silva, Adonis Marcelo;Riella, Humberto Gracher;Durazzo, Michelangelo
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1711-1716
    • /
    • 2017
  • Uranium tetrafluoride ($UF_4$) is the most used nuclear material for producing metallic uranium by reduction with Ca or Mg. Metallic uranium is a raw material for the manufacture of uranium silicide, $U_3Si_2$, which is the most suitable uranium compound for use as nuclear fuel for research reactors. By contrast, ammonium uranyl carbonate is a traditional uranium compound used for manufacturing uranium dioxide $UO_2$ fuel for nuclear power reactors or $U_3O_8-Al$ dispersion fuel for nuclear research reactors. This work describes a procedure for recovering uranium and ammonium fluoride ($NH_4F$) from a liquid residue generated during the production routine of ammonium uranyl carbonate, ending with $UF_4$ as a final product. The residue, consisting of a solution containing high concentrations of ammonium ($NH_4^+$), fluoride ($F^-$), and carbonate ($CO_3^{2-}$), has significant concentrations of uranium as $UO_2^{2+}$. From this residue, the proposed procedure consists of precipitating ammonium peroxide fluorouranate (APOFU) and $NH_4F$, while recovering the major part of uranium. Further, the remaining solution is concentrated by heating, and ammonium bifluoride ($NH_4HF_2$) is precipitated. As a final step, $NH_4HF_2$ is added to $UO_2$, inducing fluoridation and decomposition, resulting in $UF_4$ with adequate properties for metallic uranium manufacture.