Browse > Article
http://dx.doi.org/10.1016/j.net.2017.07.019

Production of uranium tetrafluoride from the effluent generated in the reconversion via ammonium uranyl carbonate  

Neto, Joao Batista Silva (Nuclear Fuel Center, Nuclear and Energy Research Institute - IPEN/CNEN-SP)
de Carvalho, Elita Fontenele Urano (Nuclear Fuel Center, Nuclear and Energy Research Institute - IPEN/CNEN-SP)
Garcia, Rafael Henrique Lazzari (Nuclear Fuel Center, Nuclear and Energy Research Institute - IPEN/CNEN-SP)
Saliba-Silva, Adonis Marcelo (Nuclear Fuel Center, Nuclear and Energy Research Institute - IPEN/CNEN-SP)
Riella, Humberto Gracher (Nuclear Fuel Center, Nuclear and Energy Research Institute - IPEN/CNEN-SP)
Durazzo, Michelangelo (Nuclear Fuel Center, Nuclear and Energy Research Institute - IPEN/CNEN-SP)
Publication Information
Nuclear Engineering and Technology / v.49, no.8, 2017 , pp. 1711-1716 More about this Journal
Abstract
Uranium tetrafluoride ($UF_4$) is the most used nuclear material for producing metallic uranium by reduction with Ca or Mg. Metallic uranium is a raw material for the manufacture of uranium silicide, $U_3Si_2$, which is the most suitable uranium compound for use as nuclear fuel for research reactors. By contrast, ammonium uranyl carbonate is a traditional uranium compound used for manufacturing uranium dioxide $UO_2$ fuel for nuclear power reactors or $U_3O_8-Al$ dispersion fuel for nuclear research reactors. This work describes a procedure for recovering uranium and ammonium fluoride ($NH_4F$) from a liquid residue generated during the production routine of ammonium uranyl carbonate, ending with $UF_4$ as a final product. The residue, consisting of a solution containing high concentrations of ammonium ($NH_4^+$), fluoride ($F^-$), and carbonate ($CO_3^{2-}$), has significant concentrations of uranium as $UO_2^{2+}$. From this residue, the proposed procedure consists of precipitating ammonium peroxide fluorouranate (APOFU) and $NH_4F$, while recovering the major part of uranium. Further, the remaining solution is concentrated by heating, and ammonium bifluoride ($NH_4HF_2$) is precipitated. As a final step, $NH_4HF_2$ is added to $UO_2$, inducing fluoridation and decomposition, resulting in $UF_4$ with adequate properties for metallic uranium manufacture.
Keywords
Ammonium Bifluoride; APOFU; Effluent Treatment; Fuel Fabrication; $UF_4$; Uranium Recovery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Stepnik, C. Blay, G. Bourdat, P. Colomb, C. Jarousse, A. Kocher, D. Geslin. Industrialization of LEU 99-Mo target production in AREVA-CERCA. Mo-99 2013 Topical Meeting on Molybdenum-99 Technological Development. April 1-5, 2013 Embassy Suites Downtown - Lakeshore Chicago, Illinois.
2 L. Jollay, J. Creasy, C. Allen, G. Solbrekken. Development, Qualification, and Manufacturing of LEU-Foil Targetry for the Production of Mo-99. Mo-99 2011 1st Annual Molybdenum-99 Topical Meeting. December 4-7, 2011 La Fonda Hotel Santa Fe, New Mexico.
3 J.A. Osso Jr., C.R.B.R. Dias, T.P. Brambilla, R. Teodoro, M.F. Catanoso, J. Zini, R.R.L. Bezerra, L.A. Villela, J.L. Correia, E. Ivanov, F.M.S. Carvalho, L. Pozzo, P.L. Squair, J. Mengatti. Production of 99Mo at IPEN-CNEN/SP-Brazil. Mo-99 2013 Topical Meeting On Molybdenum-99 Technological Development. April 1-5, 2013 Embassy Suites DowntowndLakeshore Chicago, Illinois.
4 I.J. Obadia, J.A. Perrotta., Sustainability analysis of the Brazilian Multipurpose Reactor project. In: International Topical Meeting On Research Reactor Fuel Management, 14th, March 21-25, 2010, Marrakech, Morocco.
5 H. Assmann, Uberblick uber zusammenhange zwischen LWR-Brennstoff-Eigenschaften und verfahrensablaufen bei der brennstoffproduktion, J. Nucl. Mater. 106 (1982) 15-33 [in German].   DOI
6 H. Assmann, W. Dorr, Microstructure and density of UO2 pellets for light water reactors as related to powder properties. Materials Science Monographs, n. 16, Ceramic Powders, Elsevier Scientific Publishing Company, Amsterdam, 1983, pp. 707-718.
7 H. Assmann, M. Becker, Technology of $UO_2$ fuel fabrication by the AUC powder process, Trans. Am. Nucl. Soc. 31 (1979) 147.
8 S.G. Brandberg, The conversion of uranium hexafluoride to uranium dioxide, Nucl. Technology 18 (1973) 177-184.   DOI
9 P.A. Haas, A comparison of process for the conversion of uranyl nitrate into ceramic-grade $UO_2$, Nucl. Technol. 81 (1988) 393-406.   DOI
10 F. Ploger, H. Vietzke, Gewinnung von kernbrennstoffen, Chemie Ing. Techn 37 (1965) 692-699 [in German].   DOI
11 V. Mathieu, $UO_2$ fuel fabrication by means of the AUC powder process, Trans. Am. Nucl. Soc. 28 (1978) 327-328.
12 C.D. Harrington, E. Ruehle, Uranium Production Technology, D Van Nostrand Co Inc, New Jersey, 1959.
13 E.J. Miller, The Reaction of Uranium Dioxide with Hydrogen Fluoride to Produce Uranium Tetrafluoride, Mallinckrodt Chemical Works, St. Louis. MO, Apr. 1, 1946 (MCW-24).
14 J.D. Van Impe, Uranium and fabrication, Chem. Eng. Prog. 50 (1954) 230-234.
15 Material Safety Data Sheet from Analytyka, Ammonium Bifluoride. CAS No. 1341-49-7, 2003 [Internet], [cited 2017 Apr 6]. Available from: http://www. fluoridealert.org/wp-content/pesticides/ammonium.bifluor.msds.htm.
16 K.J. Lenahan, Eldorado wet way process. Uranium 82: 12th annual hydrometallurgical meeting, held in Toronto, Aug. 29-Sept. 1, 1982.
17 L. Federgrun, A. Abrao, Determination of the contents of UO2F2, UO2 and UF4 in uranium tetrafluoride. Instituto de Energia Atomica. May 1974. Sao Paulo, Brazil. IEA-341. [in Portuguese]. [Internet], [cited 2017 Apr 6]. Available from: https://www.ipen.br/biblioteca/iea/1974/00362.pdf.
18 A.W. Ashbrook, B.C. Smart, A review and update of refining practice in Canada. International Atomic Agency. Production of yellow cake and uranium fluorides: proceedings of an Advisory Group meeting. Held in Paris, June 5-8, 1079. Vienna, 1980, pp. 261-287.
19 J.V. Opie, The Preparation of Pure Uranium Tetrafluoride by a Wet Process, Mallinckrodt Chemical Works, St. Louis. MO, Apr. 1, 1946 (MCW-25).
20 E.U.C. Frajndlich, A.M. Saliba-Silva, M.A Zorzetto, Alternative route for UF6 conversion towards UF4 to produce metallic uranium, The 1998 International Reduced Enrichment for Test Reactor Conference, Sao Paulo, Brazil October 18-23, 1998.
21 Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, Washington DC. (1988) Safety evaluation report related to the evaluation of low-enriched uranium silicide-aluminum dispersion fuel for use in nonpower reactors. NUREG-1313. 119 p.
22 D.D. Keiser Jr., S.L. Hayes, M.K. Meyer, C.R. Clark, High-density, low-enriched uranium fuel for nuclear research reactors, J. Miner. Metals Mater. Soc. 55 (2003) 55-58.
23 J.T White, A.T. Nelson, J.T Dunwoody, D.D. Byler, K.J. McClellan, Use of uranium silicide composite fuels for improved oxidation resistance in Light Water Reactor applications. Materials Science & Technology Technical Meeting 2014. Pittsburgh, Pennsylvania, USA, October 12-16, 2014.
24 M.R. Finlay, M.I. Ripley, A new fuel for research reactors. ANA 2001: Fourth Conference on Nuclear Science and Engineering in Australia, 24-25 Oct 2001 Sydney, Australian Nuclear Association.
25 International Atomic Energy Agency. Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m. IAEA Nuclear Energy Series Publications. Vienna, 2013. No. NF-T-5.4.
26 J.R. Lisboa, J. Marin, M.E. Barrera, G. Cifuentes, Manufacturing of annular targets made of LEU foil coated with electrodeposited nickel, Procedia Mater. Sci. 8 (2015) 434-441.   DOI