• Title/Summary/Keyword: $H_2O$ addition

Search Result 2,233, Processing Time 0.034 seconds

Extract of Cedrela sinensis Leaves Protects Neuronal Cell Damage Induced by Hydrogen Peroxide in Cultured Rat Neurons (과산화수소수로 유도된 배양신경세포손상에 대한 참죽나무잎 추출물의 보호효과)

  • Lee, Soon-Bok;Kim, Ju-Yeon;Cho, Soon-Ock;Ban, Ju-Yeon;Ju, Hyun-Soo;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.444-450
    • /
    • 2007
  • Dried leaves from Cedrela sinensis A. Juss. (CS), have been observed to possess various pharmacological activity and contain various antioxidant constituents. The protective effect of ethanol extract of CS on hydrogen peroxide $(H_2O_2)-induced$ neurotoxicity was examined using primary cultured rat cortical neurons in the present study. Exposure of cultured neurons to 100 ${\mu}M\;H_2O_2$ caused a significant neuronal death as assessed by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. The addition of CS, over a concentration range of 10 to $50{\mu}g/m{\ell}$, concentration-dependently prevented the $H_2O_2-induced$ neuronal apoptotic death. CS $(50{\mu}g/m{\ell})$ significantly inhibited $H_2O_2-induced$ elevation of the cytosolic $Ca^{2+}$ concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fluo-4 AM. CS (30 and $50{\mu}g/m{\ell})$ inhibited glutamate release and generation of reactive oxygen species (ROS) induced by $100{\mu}M\;H_2O_2$. These results suggest that CS may mitigate the $H_2O_2-induced$ neurotoxiciy by interfering with the increase of $[Ca^{2+}]_c$, and then inhibiting glutamate release and generation of ROS in cultured neurons.

The Protective Effect of Ethanol Extract of Polygalae Radix against Oxidative Stress-Induced DNA Damage and Apoptosis in Chang Liver Cells (산화적 스트레스에 의한 간세포의 DNA 손상 및 세포사멸 유도에 미치는 원지 에탄올 추출물의 보호 효과)

  • Kim, Hong Yun;Park, Cheol;Choi, Yung Hyun;Hwang, Won-Deok
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Objectives: The purpose of the present study was to evaluate the preventive effects of ethanol extract of Polygalae radix (EEPR) against oxidative stress (hydrogen peroxide, $H_2O_2$)-induced DNA damage and apoptosis in Chang liver cells. Methods: Chang liver cells were pretreated with various concentrations of EEPR and then challenged with 0.5 mM $H_2O_2$. The cell viability and apoptosis were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry analysis, respectively. The levels of reactive oxygen species (ROS), mitochondrial membrane potentials (MMPs) and adenosine tri-phosphate (ATP) contents were measured. Expression levels of Bcl-2 and Bax were also determined using Western blot analysis. Results: The results showed that the decreased survival rate induced by $H_2O_2$ could be attributed to the induction of DNA damage and apoptosis accompanied by the increased production of ROS, which was remarkably protected by EEPR. In addition, the loss of $H_2O_2$-induced MMPs and ATP contents was significantly attenuated in the presence of EEPR. The inhibitory effect of EEPR on $H_2O_2$-induced apoptosis was associated with up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio. Conclusions: Our data prove that EEPR protects Chang liver cells against $H_2O_2$-induced DNA damage and apoptosis by scavenging ROS and thus suppressing the mitochondrial-dependent apoptosis pathway.

Cytoprotective Effect of a Neutrase Enzymatic Hydrolysate Derived from Korea Pen Shell Atrina pectinata Against Hydrogen Peroxide -Induced Oxidative Damages in Hepatocytes (산화적 손상에 대한 키조개(Atrina pectinata) 효소 가수분해물의 간세포 보호 효과)

  • Han, Eui Jeong;Shin, Eun-Ji;Kim, Kee-Woong;Ahn, Ginnae;Bae, Tae Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • In this study, we investigated the protective effects of a Neutrase enzymatic hydrolysate derived from Korea pen shell Atrina pectinata (APN) against hydrogen peroxide (H2O2)-induced oxidative damage in hepatocytes. First, we confirmed that APN has antioxidant activities by scavenging 2,2-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) and H2O2 and increasing oxygen radical absorbance capacity (ORAC) value. Also, the treatment of APN increased the cell viability by reducing the intracellular reactive oxygen species (ROS) production in H2O2-stimulated hepatocytes. In addition, APN decreased the sub-G1 DNA contents and the apoptotic body formation increased by H2O2 stimulation. Moreover, APN modulated the protein expression of apoptosis related molecules (Bcl-2, Bax and p53) by suppressing the activation of nuclear factor NFkB and ERK/p38 signaling in H2O2-stimulated hepatocytes. Furthermore, APN led to the activation of Nrf2/HO-1signaling known as antioxidant systems. These results suggest APN protects hepatocytes against oxidative damages caused by H2O2 stimulation.

Rejection Behavior of 2-MIB and Geosmin Using Polyethersulfone Nanofiltration Membrane and Surface Hydrophilicity Effect Using $TiO_2$ Particles (2-MIB와 Geosmin의 Polyethersulfone 나노 분리막 배제율 거동 및 $TiO_2$ 적용 표면 친수화 효과 관찰)

  • Nam, Dowoo;Kim, Mooin;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.326-331
    • /
    • 2012
  • In this study, rejection behavior of 2-MIB (methylisoborneal) and geosmin which are known as taste-and-odor (T & O) causing micropollutants in drinking water source was investigated using hydrophobic polyethersulfone (PES) nanofiltration "loose" membrane (MWCO : 400 Da). It was found that the rejection of the geosmin was higher than that of the 2-MIB in all experimental conditions tested. This study also showed that the rejections of 2-MIB and geosmin were increased by increasing solution pH due to enhancing electrostatic repulsions between micropollutants and membrane surface. The presence of natural organic matter led to increase the rejection of the hydrophobic 2-MIB and geosmin and the effectiveness was more pronounced at higher solution pH. Increasing hydrophilicity of the hydrophobic membrane surface by coating with $TiO_2$ particles resulted in the significant increase in the rejection of 2-MIB and geosmin. In addition to the charge repulsion, this result suggests that hydrophobic-hydrophobic interaction should be one of main rejection mechanisms of T & O compounds by NF membrane.

Photodegradation of Safranin-O Dye by Au Metal Colloid in Cosmetics (화장품에서 금 콜로이드 입자에 의한 사프라닌 염료의 분해 연구)

  • Han, Moon-Suk;Lee, Yong-Geun;Lee, Young-Ho;Kim, Dae-Wook;Oh, Seong-Geun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.75-82
    • /
    • 2008
  • In this study, the photocatalysed degradation of safranin-O was investigated using Au colloids. Au metal nanoparticle wasused to eliminate safranin-O fast in solution. Au nanoparticles were prepared reduction method using $Na_2CO_3$ and PVP in aqueous solution. The degradation of safranin-O was examined using a variety of condition such as concentration of Au colloid or Au salt, reaction pH, and reaction time in the presence of UV light and $H_2O_2$. As the concentration of Au colloid increases, the rate of dye degradation increases. The photo-oxidation of the safranin-O was monitored spectrophotometrically. The properties of Au nanoparticles were characterized by UV-Vis spectroscopy. In addition, catalytic capacities of Au nanoparticles were also determined by UV-Vis spectroscopy.

A Study on the Treatment of Petroleum-Contaminated Soils Using Hydrogen Peroxide (석유로 오염된 토양의 과수를 이용한 처리에 관한 연구)

  • 최진호;김재호;공성호
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.49-57
    • /
    • 1997
  • Naturally-occurring iron minerals, goethite and magnetite, were used to catalyze hydrogen peroxide and initiate Fenton-like oxidation of silica sand contaminated with diesel, kerosene in batch systems. Reaction conditions were investigated by varying H$_2$0$_2$concentration(0%, 1%, 15%), initial contaminant concentration(0.2, 0.5, 1.0g diesel and kerosene/kg soil), and iron minerals(1, 5wt% magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O$$_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. In case of silica sand contaminated with diesel(1g contaminan/kg soil with 5wt% magnetite) addition of 0%, 1%, 15% of $H_2O$$_2$showed 0%, 25%, and 60% of TPH reduction in 8 days, respectively When the mineral contents were varied from 1 to 5wt%, removal of contaminants increased by 16% for magnetite and 13.1% for goethite. The results from system contaminated by kerosene were similar to those of the diesel. Reaction of magnetite system was more aggressive than that of goethite system due to dissolution of iron and presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2$$O_2$. The system used goethite has better treatment efficiency due to less $H_2$$O_2$ consumption. Results of this study showed possible application of catalyzed $H_2$$O_2$ system to petroleum contaminated site without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

Sintering Behavior of the Injection Molded W-Ni-Fe Heavy Alloy by Addition of Metallic Stat (금속 염 첨가 방법을 이용하여 사출성형된 텅스텐 중합금의 소결거동)

  • 김대건;류성수;김은표;이정근;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.294-300
    • /
    • 1999
  • This study was carried out to investigate the possibility whether Metal Injection Molding (MIM) process could be applied to 95wt.%W-3.5wt.%Ni-1.5wt.%Fe heavy alloy in order to obtain an intricate shape. Methylcellulose was used in the injection molding for binder. $FeCl_2-4H_2O$ was added in solvent substituting Fe powder and $FeCl_2$ was doped on W-Ni premixed powder. When $FeCl_2-4H_2O$ was added in solvent, the binder separation occurred for injection molding so that the matrix content was changed. Such problem was solved when $FeCl_2$ was doped. In this study. the debinding process did not affect residual carbon content. The sintered microsouctures as addition methods of Fe element and the sintering temperature from $1420^{\circ}C$ to $1470^{\circ}C$, which are around the temperature of liquid phase formation, were observed.

  • PDF

Structural properties of $Zn:LiNbO_3/Mg:LiNbO_3$ single crystal thin films grown by LPE method (LPE법으로 성장시킨 $Zn:LiNbO_3/Mg:LiNbO_3$ 단결정 박막의 구조적 특성)

  • Lee, H.J.;Shin, T.I.;Lee, J.H.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.120-123
    • /
    • 2005
  • The 5 mol% ZnO doped $LiNbO_3$ film and the 2 mol% MgO doped $LiNbO_3$ film were grown on the $LiNbO_3$ (001) substrate by liquid phase epitaxy (LPE) method with $Li_2CO_3-V_2O_5$ flux system. The crytsallinity and the lattice mismatch between $Zn:LiNbO_3$, film and $Mg:LiNbO_3$, film were analyzed by x-ray rocking curve (XRC). In addition, the ZnO and MgO distribution in the cross-section of the multilayer thin films was observed using electron probe micro analyzer (EPMA).

Protective Effect of Rehmanniae Radix Preparata Extract on $H_2O_2$-induced Apoptosis of ECV304 Cells (숙지황(熟地黃) 추출물이 $H_2O_2$에 의해 유도된 ECV304 세포의 apoptosis에 미치는 영향)

  • Kim, In-Gyu;Ju, Sung-Min;Park, Jin-Mo;Jeon, Byung-Jae;Yang, Hyun-Mo;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.76-83
    • /
    • 2009
  • Rehmannia Radix Preparata (RRP) used to nourish Eum and enrich blood for consumptive fever, aching, and limpness of the loins and knees, and to replenish essence for tinnitus, premature greying of beard and hair. In the present study, we studied about the protective effect of RRP on hydrogen peroxide-induced oxidative stress in human vascular endothelial cells. ECV304 cells were preincubated with RRP (100, 200, 300 and $400{\mu}g/m{\ell}$) for 12hr and then treated with $600{\mu}M$ $H_2O_2$ for 12hr. The protective effects of RRP on $H_2O_2$-induced apoptosis in ECV304 cells was determined by using MTT assay, FDA-PI staining, flow cytometric analysis, caspase-3 activity assay, ROS assay and western blot. The results of this experiment showed that RRP inhibited $H_2O_2$-induced apoptosis and ROS production in ECV304 cells. Moreover, RRP increased ERK activation that decreased in $H_2O_2$-treated ECV304 cells, and inhibited p38 and JNK activation. Furthermore, RRP increased expression of heme oxygenase-1 (HO-1) in $H_2O_2$-treated ECV304 cells. Also, HO-1 protein expression induced by RRP was reduced by the addition of ERK inhibitor (PD98059) in $H_2O_2$-treated ECV304 cells. These results suggest that protective effect of RRP on $H_2O_2$-induced oxidative stress in ECV304 cells may be associated with increase of ERK activation and HO-1 protein, and reduction of p38 and JNK activation.

Preparation of $Mg(OH)_2$and MgO from Acid Leaching $Mg^{++}$ Solution (산 침출$Mg^{++}$액으로부터 $Mg(OH)_2$및 MgO 粉末의 製造)

  • 최용각;이종현;원창환;이갑호
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.16-21
    • /
    • 2001
  • Ultrafine $Mg(OH)l_2$and MgO powders were recovered from the waste solution containing $Mg^{++}$ which was a by-product of SHS (Self-propagating High temperature Synthesis)process. The optimum experimental conditions to prepare $Mg(OH)_2$were 13.0 of pH and 0.7M of $Mg^{++}$ content with addition of 9M of KOH as a pH regulator in acid leaching solution. Complete pre-cipitation of Mg(OH)$_2$from $Mg^{++}$ was realized at that condition. The dehydration reaction of the prepared Mg(OH)$_2$was studied by DSC, and the result was used for calcination process. In order to obtain MgO powder, dried Mg(OH)2 powder was calcined at $400~450^{\circ}C$. Particle size and shape of the prepared $Mg(OH)_2$and MgO powder was similar to those of the commercial powders.

  • PDF