• Title/Summary/Keyword: $H_2O$ addition

Search Result 2,243, Processing Time 0.033 seconds

Effects of Dietary Probiotic on Growth Performance, Nutrients Digestibility, Blood Characteristics and Fecal Noxious Gas Content in Growing Pigs

  • Chen, Y.J.;Son, K.S.;Min, B.J.;Cho, J.H.;Kwon, O.S.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1464-1468
    • /
    • 2005
  • The aim of this study was to assess the effects of dietary complex probiotic (Lactobacillus acidophilus, $1.0{\times}10^7$ CFU/g; Saccharomyces cerevisae, $4.3{\times}10^6$ CFU/g; Bacillus subtilis $2.0{\times}10^6$ CFU/g) on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in growing pigs. Ninety [(Duroc${\times}$Yorkshire)${\times}$Landrace] pigs with the average initial BW of 39.75${\pm}$1.97 kg were allocated into three treatments by a randomized complete block design. There were five pens per treatment with six pigs per pen. Dietary treatments include: 1) CON (basal diet); 2) CP1 (basal diet+complex probiotic 0.1%) and 3) CP2 (basal diet+complex probiotic 0.2%). During the entire experimental period of 6 weeks, results showed that addition of complex probiotic at the level of 0.2% to diet increased ADG significantly (p<0.05). Also, digestibilities of DM and N tended to increase, however, no significant differences were observed (p>0.05). Blood characteristics (IgG, Albumin, total protein, RBC, WBC and lymphocyte) of pigs were not affected (p>0.05) by complex probiotic supplementation. Fecal $NH_3$-N was decreased (11.8%) significantly by the addition of complex probiotic (p<0.05), but no effects were observed on fecal acetic acid, propionic acid and butyric acid concentrations (p>0.05). In conclusion, results in this experiment indicated that dietary complex probiotic supplementation had a positive effect on growing pigs performance and could decrease fecal $NH_3$-N concentration.

UV Barrier and Antimicrobial Activity of Agar-based Composite Films Incorporated with ZnO Nanoparticles and Grapefruit Seeds Extract (ZnO 나노입자와 자몽씨추출물을 첨가한 아가복합필름의 자외선차단 및 항균특성)

  • Kim, Yeon Ho;Bang, Yeong-Ju;Yoon, Ki Sun;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.69-77
    • /
    • 2019
  • Agar-based nanocomposite films were prepared by incorporation of zinc oxide nanoparticles (ZnONP) and grapefruit seed extract (GSE). The composite films were characterized using FT-IR, UV-visible spectroscopy and thermalgravimetric analysis (TGA). The composite films showed light absorption peaks at 220 and 380 nm, characteristic for GSE and ZnONP, respectively. The UV-light transmittance of the agar film was markedly reduced from 54.4 ± 1.3% to 5.8 ± 2.5% with little sacrifice of transparency when 3 wt% ZnONP and 5 wt% GSE were added. The mechanical and water vapor barrier properties increased slightly though they were not significant statistically by the addition of ZnONP and GSE. The nanocomposite films showed stronger antibacterial activity against L. monocytogenes than E. coli O157: H7 and the antibacterial activity was affected by bacterial types as well as concentrations of ZnONP and GSE. The nano-composite film incorporated with 3 wt% of ZnONP and 5 wt% of GSE exhibited strong antibacterial activity against Listeria monocytogenes and E. coli O157: H7. The results indicate that 3 wt% of ZnONP and 5 wt% of GSE are the optimal concentrations for producing functional agar/ZnONP/GSE composite films.

Basic Characteristics of ALC using Carbon dioxide Conversion Capture Materials (이산화탄소전환탄산화물 혼합 경량기포 콘크리트의 기초 특성)

  • Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum;Kuem-Dan Park;Young-Gon Kim;Eun-Sung Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.121-127
    • /
    • 2024
  • In this study, the applicability of replacing DG(Desulfurized Gypsum) from oil refinery with CCCMs(Carbon dioxide Conversion Capture Materials) as an ALC(Auto-claved LIghtweight Concrete) raw material was examined, and basic properties of ALC was measured. The main chemical components of DG and CCCMs were CaO and SO3, and an increase in LOI(Loss of ignition) due to mineral carbonation reaction was verified. The crystalline phases of CCCMs were CaCO3, CaSO4, Ca(OH)2, and CaSO4·2H2O. When DG, a raw material for ALC production, was replaced with CCCMs, foaming height, pore shape, absolute dry gravity, and compressive strength results measured similar for all binders. In addition, the formation of tobermorite which is main crystalline phase of ALC was shown for all specimens in microstructural analysis.

Neuroprotective Effects of a Novel Peptide Purified from Venison Protein

  • Kim, Eun-Kyung;Lee, Seung-Jae;Moon, Sang-Ho;Jeon, Byong-Tae;Kim, Bo-Kyung;Park, Tae-Kyu;Han, Ji-Sook;Park, Pyo-Jam
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.700-707
    • /
    • 2010
  • A novel antioxidative peptide (APVPH I, antioxidative peptides from venison protein hydrolysates I) was purified from venison by enzymatic hydrolysis, column chromatography of DEAE-Sephacel, and high-performance liquid chromatography. The molecular mass of the purified peptide was found to be 9,853 Da and the amino acid sequences of the purified peptide was Met-Gln-Ile-Phe-Val-Lys-Thr-Leu-Thr-Gly. The purpose of this study was to evaluate the effects of APVPH I against $H_2O_2$-induced neuronal cells damage in PC-12 cells. Antioxidative enzyme levels in cultured neuronal cells were increased in the presence of the peptide. In addition, APVPH I inhibited productions of nitric oxide (NO), reactive oxygen species (ROS), malondialdehyde (MDA), and cell death against $H_2O_2$-induced neuronal cell damage in PC-12 cells. It was presumed to be APVPH I involved in regulating the apoptosis-related gene expression in the cell environment. The present results indicate that APVPH I substantially contributes to antioxidative properties in neuronal cells.

The Protective Effects of Protocatechuic Acid from Momordica charantia against Oxidative Stress in Neuronal Cells (여주 활성 물질 Protocatechuic Acid의 신경세포의 산화적 스트레스에 대한 개선 효과)

  • Choi, Jung Ran;Choi, Ji Myung;Lee, Sanghyun;Cho, Kye Man;Cho, Eun Ju;Kim, Hyun Young
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • Protocatechuic acid is an active phenolic acid compound from Momordica charantia. In this study, we investigated the protective effect of protocatechuic acid against oxidative stress under cellular system using C6 glial cell. The oxidative stress was induced by hydrogen peroxide ($H_2O_2$) and amyloid beta 25-35 ($A{\beta}_{25-35}$), and they caused the decrease of cell viability and overproduction of reactive oxygen species (ROS). However, the treatment of protocatechuic acid significantly elevated the decreased cell viability and inhibited the overproduction of ROS by $H_2O_2$. In addition, protocatechuic acid significantly recovered the cellular damage induced by $A{\beta}_{25-35}$. In particular, protocatechuic acid at the concentration $10{\mu}g/mL$ decreased the elevated ROS level to normal level. These results indicate that protocatechuic acid may have neuroprotective effect through attenuating oxidative stress.

Enhancement of Spermidine Content and Antioxidant Capacity by Modulating Ginseng Spermidine synthase in Response to Abiotic and Biotic Stresses

  • Parvin, Shohana;Lee, Ok-Ran;Sathiyaraj, Gayathri;Kim, Yu-Jin;Khorolragchaa, Altanzul;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.14-14
    • /
    • 2011
  • Polyamines (putrescine, spermidine and spermine) play pivotal roles in plant defense to different abiotic and biotic stresses. In order to understand the function of ginseng spermidine synthase gene, a key gene involved in biosynthesis of polyamines, transgenic plant was generated in Arabidopsis. The transgenic plants exhibited high levels of polyamines compared to the untransformed control plants. We investigated the tolerance capacity of transgenic plants to abiotic stresses such as salinity and copper stress. In addition, transgenic plants also showed increased resistance against one of the important fungal pathogens of ginseng, the wilt causing Fusarium oxysporum and one of important bacteria, bacterial blight causing Pseudomonas syringae. However, an activity of the polyamine catabolic enzyme, diamine oxidase (DAO) was increased significantly in F. oxysporum and P. syringae infected transgenic plant. Polyamine catabolic enzymes which may trigger the hypersensitive response (HR) by producing hydrogen peroxide ($H_2O_2$) seem act as an inducer of PR proteins, peroxidase and phenyl ammonium lyase activity. The transgenic plants also contained higher antioxidant enzyme activities, less MDA and $H_2O_2$ under salt and copper stress than the wild type, implying it suffered from less injury. These results strongly suggest an important role of spermidine as a signaling regulator in stress signaling pathways, leading to build-up of stress tolerance mechanisms.

  • PDF

Chemical composition, antioxidant potential and cyto-protecting activity of essential oil of Liriodendron tulipifera L. leaves

  • Yadav, Anil Kumar;Kim, Sang Ho;Kang, Sun Chul
    • The Korea Journal of Herbology
    • /
    • v.30 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • Objectives : The present study was under taken to characterize chemical composition, antioxidant and cyto-protecting capacity of essential oil obtained from leaves of Liriodendron tulipifera L. Methods : Essential oil from the leafof L. tulipifera L. (EOLL) was extracted by hydro-distillation process and further its chemical composition was evaluated by GC-MS analysis. The in vitro antioxidant potential of the EOLL was determined by DPPH , ABTS ●+, superoxide and nitric oxide free radical scavenging activity using different concentrations in the range of 50-800 μg/mL. In addition, cyto-protecting property of the EOLLwas determined by MTT assay on Raw 264.7 macrophage cells challenged with hydrogen peroxide (H 2 O 2 ). Results : The result of GC-MS analysis showed presence of 34 volatile compounds, principally germacrene D, spathulenol, and α -cadinol in EOLL. The in vitro antioxidant assays of EOLL at the highest used concentration of 800 μg/mL showed 81.62, 84.29, 83.59 and 58.59% inhibition of DPPH , ABTS ●+, superoxide, and nitric oxide radicals, respectively. It also showed ferric reducing ability with 1310.04 mM Fe (II)/g of essential oil. The EOLL at three different concentrations (200, 400 and 800 μg/mL) protected the cells from H 2 O 2 -induced cell damage through scavenging intracellular ROS. Conclusion : The findings from the study suggest that essential oil isolated from leaves of L tulipifera L. is a potent sources of natural antioxidants, which could be used to treat the diseases associated with oxidative stress condition.

Relationships between Malignant Melanoma and Chromosome Damage in Human Peripheral Blood Lymphocytes

  • Narin, Abdullah;Tuncay, Orta
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5229-5232
    • /
    • 2012
  • The incidence of malignant melanoma increases with age. One significiant effect of aging processes is an accumulation of oxidative damage in the genetical material. In this study, the relationship between malignant melanoma and damage in chromosomes and proliferative effectiveness of human peripheral lymphocytes were investigated by the micronucleus (MN) technique. A total of 15 malignant melanoma patients and appropriately matching 15 healthy controls were involved in the study. MN frequencies and proliferative indexes (PI) after non toxic levels of hydrogen peroxide treatment were also measured to determine damaging effect of oxidative stress in genome in addition to measuring the spontenous levels of micronuclei and PI. The patient group had a significantly higher rate of spontaneous MN than the control group (p<0.01). After treatment with $H_2O_2$, MN frequencies in the patient group was significantly decreased (p<0.01) although there was no difference between the treated and untreated results of control group (p=0.29). There was also difference (p<0.01) between the MN frequencies of the patient and the control group either in the spontaneous levels or in the $H_2O_2$ treated groups. The same significant difference persisted when the PI values were compared between patient and control groups. Increase in the MN frequency in patients could mean the alterations in the chromosomal structure which may lead to the chromosome instability and therefore genetic susceptibility to cancer. This increased number of micronuclei can also be used for cytological marker in identifying high risk cases for malignant melanoma.

Antioxidation and Anticancer Effects of Polyozellus multiplex (까치버섯(Polyozellus multiplex) 추출물의 항산화 및 항암효과)

  • Han, Jung;Lee, In-Seon
    • The Korean Journal of Mycology
    • /
    • v.28 no.1
    • /
    • pp.55-59
    • /
    • 2000
  • This study was carried out to investigate the antioxidative and chemopreventive effects of the extracts from Polyozellus multiplex, an edible mushroom through in vitro and in vivo assay. Polyozellus multiplex fractions were assayed for its antioxidative effect with colony formation assay. Polyozellus multiplex methanol extract and water fraction showed protective effects against the cytotoxicity of $H_2O_2$. The modifying effects of Polyozellus multiplex methanol extract and water fraction on the induction of carcinogenesis by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were investigated in Wistar rats. The GSH content was decreased by MNNG treatment but was increased by adding Polyozellus multiplex water fractions. Also the activity of glutathione S-transferase and the superoxide dismutase levels were increased by the treatment of Polyozellus multiplex water fractions more than with MNNG alone. In addition to the Polyozellus multiplex water fraction increased the p53 expression as compared with the value of MNNG alone.

  • PDF

Antidiabetic and Antioxidative Effect of Lycii fructus in Streptozotocin-Induced Diabetic Rats (구기자 분획물이 Streptozotocin으로 유발 된 당뇨 흰쥐에 대한 항당뇨 및 항산화작용에 미치는 효과)

  • Kim, Ok-Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.2
    • /
    • pp.128-136
    • /
    • 2009
  • This study was carried out to investigate the antidiabetic and antioxidative effect of Lycii fructus in the Streptozotocin(STZ)-induced diabetic rats. The effective fractions were prepared as a form of organic solvents of $CH_{3}(CH_{2})_{4}CH_{3}$ $CHCI_{3}$, EtOAc, BuOH and $H_{2}O$ fractions prepared from the EtOH extract of Lycii fructus and The diabetes were induced by an tail-intravenous injection of STZ with a dose of 45 mg/kg dissolved in citrate buffer. The various fractions of Lycii fructus were orally administrated once a day for 7 days. The contents of serum glucose, and triglyceride in the $CHCI_{3}$ fraction and hepatic lipid peroxidation in the EtOAc, BuOH and $H_{2}O$ fractions treated rats were significantly decreased when compared to those of the STZ-control group In addition, an activity of hepatic GST in the BuOH fraction treated rats was significantly increased compared to that of the STZ-control group. whereas, activities of hepatic catalase, GSH-Px in the BuOH fraction treated rats were significantly decreased compared to those of the STZ-control group. Meanwhile, The content of hepatic glycogen and avtivity of hepatic glucokinase in $CHCI_{3}$ fraction treated rats were significantly increased, but activity of glucose-6-pase was significantly decreased in the $CHCI_{3}$ fraction treated rats. In conclusion, these results indicated that the BuOH fraction of Lycii fructus was effective for the antioxidation, and also the $CHCI_{3}$ fraction of Lycii fructus was effective for the antidiabetes in the STZ-induced diabetic rats.