• Title/Summary/Keyword: $H_2/H_\infty$

Search Result 437, Processing Time 0.031 seconds

ROBUST MIXED $H_2/H_{\infty}$ GUARANTEED COST CONTROL OF UNCERTAIN STOCHASTIC NEUTRAL SYSTEMS

  • Mao, Weihua;Deng, Feiqi;Wan, Anhua
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.699-717
    • /
    • 2012
  • In this paper, we deal with the robust mixed $H_2/H_{\infty}$ guaranteed-cost control problem involving uncertain neutral stochastic distributed delay systems. More precisely, the aim of this problem is to design a robust mixed $H_2/H_{\infty}$ guaranteed-cost controller such that the close-loop system is stochastic mean-square exponentially stable, and an $H_2$ performance measure upper bound is guaranteed, for a prescribed $H_{\infty}$ attenuation level ${\gamma}$. Therefore, the fast convergence can be fulfilled and the proposed controller is more appealing in engineering practice. Based on the Lyapunov-Krasovskii functional theory, new delay-dependent sufficient criteria are proposed to guarantee the existence of a desired robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which are derived in terms of linear matrix inequalities(LMIs). Furthermore, the design problem of the optimal robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which minimized an $H_2$ performance measure upper bound, is transformed into a convex optimization problem with LMIs constraints. Finally, two simulation examples illustrate the design procedure and verify the expected control performance.

Design of $H_2$ and $H_{\infty}$ static output feedback controllers (정적출력궤환 $H_2$$H_{\infty}$ 제어기 설계)

  • Kim, Seog-Joo;Lee, Jong-Moo;Cheon, Jong-Min;Kwon, Soon-Man;Park, Min-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2564-2566
    • /
    • 2005
  • This paper presents an iterative linear matrix inequality (LMI) method for $H_2$ and $H_{\infty}$ optimal static output feedback (SOF) control, which is expressed in terms of LMIs subject to an additional rank condition. We propose a linear Penalty function to penalize the rank constraint so that static $H_2$ and $H_{\infty}$ synthesis results in solving a series of convex LMI optimization problems. Numerical experiments for various $H_2$ and $H_{\infty}$ SOF synthesis were performed to demonstrate the effectiveness of the proposed algorithm.

  • PDF

Design of the $H_2$ Controllers with $H_{\infty}$ Constraints Using Genetic Algorithms (유전 알고리즘을 이용한 $H_{\infty}$ 제한 조건을 갖는 $H_2$ 제어기 설계)

  • Lee, Jong-Sung;Kang, Ki-Won;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.599-602
    • /
    • 1999
  • In this paper, the genetic algorithm is used to design a mixed $H_2/H{\infty}$ controller. Two kinds of controller forms, Youla's form and the general form are considered to design a mixed $H_2/H{\infty}$ controller Efficient searching methods are sought to minimize the given $H_2$ cost function under the $H{\infty}$ constraint. It is verified by an example that the developed algorithm can provide stable results in the region where unstable results are shown by the conventional gradient method.

  • PDF

DISCRETE-TIME MIXED $H_2/H_{\infty}$ FILTER DESIGN USING THE LMI APPROACH

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.129-132
    • /
    • 1999
  • This paper deals with the optimal filtering problem constrained to input noise signal corrupting the measurement output for linear discrete-time systems. The transfer matrix H$_2$and/or H$_{\infty}$ norms are used as criteria in an estimation error sense. In this paper, the mixed $H_2/H_{\infty}$ filtering Problem in lineal discrete-time systems is solved using the LMI approach, yielding a compromise between the H$_2$and H$_{\infty}$ filter designs. This filter design problems we formulated in a convex optimization framework using linear matrix inequalities. A numerical example is presented.

  • PDF

Mixed H$_2$H$\infty$and $\mu$-synthesis Approach to Coupled Three-Inertia Benchmark Problem (혼합 H$_2$H$\infty$$\mu$-이론을 이용한 벤치마크 문제의 해법)

  • 최연욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.22-22
    • /
    • 2000
  • This study investigates the use of mixed $H_2/H_{\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertia system which reflects the dynamics of mechanical vibrations. We, first adopt the mixed $H_2/H_{\infty}$ the to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty.

  • PDF

Design of a Mixed $H_2/H_{\infty}$ Filter Using Convex Optimization (컨벡스 최적화를 이용한 혼합 $H_2/H_{\infty}$ 필터의 설계)

  • Jin, Seung-Hee;Ra, Won-Sang;Yoon, Tae-Sung;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.750-753
    • /
    • 1998
  • This paper gives a simple parameterization of all stable unbiased filters to solve the suboptimal mixed $H_2/H_{\infty}$ filtering problem. Using the central filter, mixed $H_2/H_{\infty}$ filter is designed which minimizes the upper bound for the $H_2$ norm of the transfer matrix from a white noise to the estimation error subject to an $H_{\infty}$ norm constraint on the transfer matrix from an energy-bounded noise to the estimation error. The problem of finding suitable estimator gain can be converted into a convex optimization problem involving linear matrix inequalities.

  • PDF

The hovering Flight Attitude Control of a Helicopter using Mixed $H_2/H_{\infty}$ Control Techniques ($H_2/H_{\infty}$ 혼합 제어 기법을 이용한 헬리콥터의 정지 비행 자세 제어에 관한 연구)

  • Lee, Myung-Wook;Ko, Kang-Woong;Min, Deuk-Gi;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2599-2601
    • /
    • 2000
  • A helicopter control problem has been researched with many control theory. Especially, study of the hovering flight attitude control of a helicopter has been brisked since 60s with multivariable control theory. In this paper, the modeling is interpreted through the 6-freedom equation. To getting a entire equation, species of parameters and charts are adapted. The $H_2/H_{\infty}$ controller is acquired by mixing the $H_2$ control theory and the $H_{\infty}$ control theory. The $H_2$ control theory is reasonable one to increase the performance of a plant, and the $H_{\infty}$ control theory secures the robust stability. The simulation shows that the helicopter system is being controlled while maintaining performance and robust stability against perturbation.

  • PDF

Observer-Based Mixed $H_2/H_{\infty}$ Control Design for Linear Systems with Time-Varying Delays: An LMI Approach

  • Karimi, Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • This paper presents a convex optimization method for observer-based mixed $H_2/H_{\infty}$ control design of linear systems with time-varying state, input and output delays. Delay-dependent sufficient conditions for the design of a desired observer-based control are given in terms of linear matrix inequalities (LMIs). An observer-based controller which guarantees asymptotic stability and a mixed $H_2/H_{\infty}$ performance for the closed-loop system of the linear system with time-varying delays is then developed. A Lyapunov-Krasovskii method underlies the observer-based mixed $H_2/H_{\infty}$ control design. A numerical example with simulation results illustrates the effectiveness of the methodology.

Robust Positioning Control of a Flexible beam using $H_2/H_\infty$ and $\mu$ theory ($H_2/H_\infty$$\mu$ 이론을 이용한 유연 빔의 위치제어)

  • 최연욱;이형기
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.133-136
    • /
    • 2000
  • The objective of this paper is to present a method for designing robust positioning control systems of a flexible arm using $H_2/H_{\infty}$ and $\mu$ theory. We begin with a description of the flexible arm based on the model identification method and discuss the derivation of the model uncertainty. The validity of the obtained model is confirmed experimentally Next, a robust controller is designed based on the $H_2/H_{\infty}$ and $\mu$ theory by which we can improve robustness of the entire system. On this occasion, we also propose a general plant formation suitable to $H_2/H_{\infty}$ control. Finally, the effectiveness of the proposed design method is verified through experimentation.

  • PDF

Mixed $H_2/H_{$\infty}$ and $\mu$-synthesis Approach to the Coupled Three-Inertia Problem (혼합 $H_2/H_{$\infty}$$\mu$-설계이론을 이용한 3관성 문제의 해법)

  • Choe, Yeon-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.896-903
    • /
    • 2001
  • This study investigates the use of mixed $H_2/H_{$\infty}$ and $\mu$-synthesis to construct a robust controller for the benchmark problem. The model treated in the problem is a coupled three-inertial system that reflects the dynamics of mechanical vibrations. This kind of problem requires to be satisfied the robust performance (both in the time and frequency-domain specifications). We, first, adopt the mixed $H_2/H_{$\infty}$ theory to design a feedback controller K(s). Next, $\mu$-synthesis method is applied to the overall system to make use of structured parametric uncertainty. This process permits higher levels of controller authority and reduces the conservativeness of the controller. Finally, the feedforward controller is also used to improve the transient response of the output. We confirm that all design specifications except a complementary sensitivity condition can be achieved.

  • PDF