• 제목/요약/키워드: $H_{\infty}$ controller

검색결과 572건 처리시간 0.028초

능동 현가 시스템을 위한 $H_{2}$/$H_{\infty}$ 제어기 설계 ($H_{2}$/$H_{\infty}$ control of active suspension system)

  • 정우영;김상우;원상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.888-891
    • /
    • 1996
  • The objective of a mixed H$_{2}$/H$_{\infty}$ controller of active suspension system is to achieve not only the general performance improvement(H$_{2}$) but also the worst case disturbance rejection(H$_{\infty}$). In this paper, a mixed H$_{2}$/H$_{\infty}$ controller for an active suspension system, comparing the performance with that of an H$_{2}$ controller and of an H$_{\infty}$ controller.ler.EX> controller.

  • PDF

LMI 에 기초한 연속 냉간압연기의 H^{\infty} 서보 제어기 설계 (Design of an LMI- Based H^{\infty} Servo Controller for Tandem Cold Mill)

  • 김인수;황이철;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.25-34
    • /
    • 2000
  • In this paper, we design a H^\infty servo controller for gauge control of tandem cold mill. To improve the performance of the AGC(Aotomatic Gauge Control) system based on the Taylor linearized model of tandem cold mill, the H^\infty servo controller is designed to satisfy robust stability, disturbance attenuation and robust tracking properties. The H^\infty servo controller problem is modified as an usual H^\infty control problem, and the solvability condition of the H^\infty servo problem depends on the solvability of the modified H^\infty control problem. Since this modified problem does not satisfied standard assumptions for the H^\infty control problem, it is solved by an LMI(Linear Matrix Inequality) technique. Consequently, the comparison between the H^\infty servo controller and the existing PID/FF(FeedForward) controller shows the usefulness of this study.

  • PDF

수중운동체의 $H_\infty$ 심도제어기 설계 ($H_\infty$ Depth Controller Design for Underwater Vehicles)

  • 이만형;정금영;김인수;주효남;양승윤
    • 제어로봇시스템학회논문지
    • /
    • 제6권5호
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

Robust Controller Design for a Stabilized Head Mirror

  • Keh, Joong-Eup;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.78-86
    • /
    • 2002
  • In this paper, LMI (Linear Matrix Inequality) based on H$\_$$\infty$/ controller for a lire of sight (LOS) stabilization system. It shows that the proposed controller has more excellent stabilization performance than that of the conventional PI-Lead controller. An H$\_$$\infty$/ control has been also applied to the system for reducing modeling errors and the settling time of the system. The LMI-based H$\_$$\infty$/ controller design is more practical in view of reducing a run-time than Riccati-based H$\_$$\infty$/ controller. This H$\_$$\infty$/ controller is available not only to decrease the gain in PI-Lead control, but also to compensate the identifications for the various uncertain parameters. Therefore, this paper, shows that the proposed LMI-based H$\_$$\infty$/ controller had good disturbance attenuation and reference input tracking performance compared with the control performance of the conventional controller under any real disturbances.

혼합 $H_{\infty}$ 최적화 기법을 이용한 견실 $H_{\infty}$ 증기발생기 수위제어기 설계 (Robust $H_{\infty}$ Controller Design for Steam Generator Water Level Control using Mixed $H_{\infty}$ Optimization Method)

  • 서성환;조희수;박홍배
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.363-369
    • /
    • 1999
  • In this paper, we design the robust $H_{\infty}$ controller for water level control of steam generator using a mixed $H_{\infty}$ optimization with model-matching method. Firstly we choose the desired model which has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant. Simulation results show that proposed robust $H_{\infty}$ controller at specific power operation has satisfactory performances against the variations of load power, steam flow rate, primary circuit coolant temperature, and feedwater temperature. It can be also observed that the proposed robust $H_{\infty}$ controller exhibits better robust stability than conventional PI controller.

  • PDF

미지 부하 질량을 갖는 유연 링크 로봇의 $H_{\infty}$ 자기 동조 제어 ($H_{\infty}$ Self-Tuning Control of a Flexible Link Robot with Unknown Payload)

  • 한기봉;이시복
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.160-168
    • /
    • 1997
  • A $H_{\infty}$self-tuning control scheme for the tip position of a flexible link robot handling unknown loads is presented here. The scheme essentially comprises a recursive least-squares identification algorithm and $H_{\infty}$self-tunning controller. The $H_{\infty}$control low is designed to be robust to uncertain parameters and the self-tunning action provides adaption to unknown parameters. Through numerical study, the performance comparison of the $H_{\infty}$self-tuning controller with a constant gain $H_{\infty}$controller as well as a LQG self-tuning controller clearly shows its superior ability in handling load changes in quiescent states.nt states.

  • PDF

도립진자 시스템에 선형 분수 표현법을 이용한 $H_2/ H_\infty$ 제어 (The $H_2/ H_\infty$ control of inverted pendulum system using linear fractional representation)

  • 곽칠성;최규열
    • 한국정보통신학회논문지
    • /
    • 제3권4호
    • /
    • pp.875-885
    • /
    • 1999
  • This paper presents an application of LMI-based techniques to the mixed $H_2/ H_\infty$ control of an inverted pendulum. The linear model of the inverted pendulum represented by an LFR(Linear Fractional Representation) model of uncertainties is derived. Considered uncertainties are three nonlinear components and a parameter uncertainty Augmenting the LFR model by adding weighting functions, we get a generalized plant, for which we design a mixed $H_2/ H_\infty$ controller using the LMI technique. To evaluate control performances and robust stability of the mixed $H_2/ H_\infty$ controller designed, we compare it with the $ H_\infty$controller through the simulation and experiment. The mixed $H_2/ H_\infty$ controller shows the better control performances and robust stability than the $H_\infty$controller in the sense of pendulum angle.

  • PDF

도립진자 시스템의 LFR에 의한 LMI 혼합 ${H_2}/H_{\infty}$ 제어 (The LMI mixed ${H_2}/H_{\infty}$ control of inverted pendulum system using LFR)

  • 박종우;이상철;이상효
    • 한국통신학회논문지
    • /
    • 제25권7A호
    • /
    • pp.967-977
    • /
    • 2000
  • 본 논문은 도립전자 시스템을 LFR(Linear Fractional Representation)로 표현하여 얻어진 일반화 제어대상에 대하여 혼합 ${H_2}/H_{\infty}$ 제어기법을 적용한다. 먼저, 일반화 제어대상을 얻기 위하여, LFR로 표현한 도립진자의 선형 모델을 유도한다. LFR에서 고려한 구체적인 불확실성은 3개의 비선형 성분과 1개의 진자질량 불확실성이다. 유도된 선형모델에 하중함수를 더하여 LFR 모델을 확대함으로써 일반화된 제어대상을 얻는다. 다음으로, 이 일반화 제어대상에 대하여 혼합 ${H_2}/H_{\infty}$ 제어기를 설계한다. 혼합 ${H_2}/H_{\infty}$ 제어기 설계를 위해서 LMI(Linear Matrix Inequalities) 기법을 이요한다. 설계된 혼합 ${H_2}/H_{\infty}$ 제어기의 제어성능과 강건 안정성을 평가하기 위해서 모의실험과 실물실험을 통하여 $H_{\infty}$ 제어기와 비교한다. 실험결과, $H_{\infty}$ 제어때 보다 적은 피드백 정보만으로도 혼합 ${H_2}/H_{\infty}$ 제어기는 도립진자의 진자각도 측면에서 $H_{\infty}$ 제어기보다 나은 강건 안정성과 제어 성능을 보인다.

  • PDF

Mixed $H_2/H_{\infty}$ Controller Realization with Entropy Integral

  • Lee, Sang-Hyuk;Kim, Ju-Sik
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.206-209
    • /
    • 2003
  • An $H_2$/$H_{\infty}$ -controller realization is carried out by considering an entropy integral. Using J-spectral factorization, the parametrizations of all $H_{\infty}$ stabilizing controllers are derived. By the relation of a mixed $H_2$/$H_{\infty}$ control problem and a minimum entropy/$H_{\infty}$ control problem, the mixed $H_2$/$H_{\infty}$-controller state-space realization is presented.

Mixed $H_2/H_{\infty}$ Control of Two-wheel Mobile Robot

  • Roh, Chi-Won;Lee, Ja-Sung;Lee, Kwang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.438-443
    • /
    • 2003
  • In this paper, we propose a control algorithm for two-wheel mobile robot that can move the rider to his or her command and autonomously keep its balance. The control algorithm is based on a mixed $H_2/H_{\infty}$ control scheme. In this control problem the main issue is to move the rider while keeping its balance in the presence of disturbances and parameter uncertainties. The disturbance force caused by uneven road surfaces and the uncertainty due to different rider's heights are considered. To this end we first consider a state feedback controller as a basic framework. Secondly, we obtain the state feedback gain $K_2$ minimizing the $H_2$ norm and the state feedback gain $K_{\infty}$ minimizing the $H_{\infty}$ norm over the whole range of parameter uncertainty. Finally, we select mixed $H_2$/$H_{\infty}$ state feedback controller K as the geometric mean of $K_2$ and $K_{\infty}$. Simulation results show that the mixed $H_2/H_{\infty}$ state feedback controller combines the effects of the optimal $H_2$ state feedback controller and robust $H_{\infty}$ controller state feedback controller efficiently in the presence of disturbance and parameter uncertainty.

  • PDF