• 제목/요약/키워드: $H_\infty$-norm

검색결과 145건 처리시간 0.029초

Reliable Robust Control for Singularly Perturbed Systems by Delta Operator Approach

  • Shim, Kyu-Hong;M. Edwin Sawan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.34.5-34
    • /
    • 2001
  • This paper presents a reliable H$\infty$ controller design for singularly perturbed systems by the delta operator approach that guarantees stability with a known H$\infty$ norm bound in case of failures in some control channels. Prespecified are the control channels that may experience failures. Sensor outage is covered in this paper It is shown that the delta systems have improved finite wort length characteristics in the example.

  • PDF

Indirect self-tuning regulator with loopshaping

  • Han, Seong-Ho;Yoshihiro, Takita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.47.6-47
    • /
    • 2001
  • In this paper a new indirect robust self-tuning regulator is proposed including an inverse system of a plant and a robust compensator such that it achieves the desired frequency shape specified by solving the mixed H$\infty$ sensitivity problem within a prescribed tolerance in the H$\infty$ norm. Consequently, in the proposed self-tuning regulator, robust stability is guaranteed in spite of the identification error.

  • PDF

Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm

  • Nestorovic, Tamara;Trajkov, Miroslav;Garmabi, Seyedmehdi
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1041-1062
    • /
    • 2015
  • In this paper a method of finding optimal positions for piezoelectric actuators and sensors on different structures is presented. The genetic algorithm and multi-objective genetic algorithm are selected for optimization and $H_{\infty}$ norm is defined as a cost function for the optimization process. To optimize the placement concerning the selected modes simultaneously, the multi-objective genetic algorithm is used. The optimization is investigated for two different structures: a cantilever beam and a simply supported plate. Vibrating structures are controlled in a closed loop with feedback gains, which are obtained using optimal LQ control strategy. Finally, output of a structure with optimized placement is compared with the output of the structure with an arbitrary, non-optimal placement of piezoelectric patches.

ERROR ESTIMATES OF RT1 MIXED METHODS FOR DISTRIBUTED OPTIMAL CONTROL PROBLEMS

  • Hou, Tianliang
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.139-156
    • /
    • 2014
  • In this paper, we investigate the error estimates of a quadratic elliptic control problem with pointwise control constraints. The state and the co-state variables are approximated by the order k = 1 Raviart-Thomas mixed finite element and the control variable is discretized by piecewise linear but discontinuous functions. Approximations of order $h^{\frac{3}{2}}$ in the $L^2$-norm and order h in the $L^{\infty}$-norm for the control variable are proved.

Networked $H_{\infty}$ Approach에 의한 전력계통안정화 (Networked $H_{\infty}$ Approach and Power System Stabilization)

  • 이상성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.226-228
    • /
    • 2005
  • This paper deals with power system stabilization problem using a network control system in which the control is applied through a communication channel in feedback form. Analysis and synthesis issues are investigated by modeling the packet delivery characteristics of the network as a Bernoulli random variable, which is described by a two state Markov chain. This model assumption yields an overall system which is described by a discrete-time Markov jump linear system. These employ the norm to measure the performance of the system, and they compute the norm via a necessary and sufficient matrix inequality condition.

  • PDF

H 기반 틸트로터 항공기 횡방향 SCAS 설계 (Design of Lateral SCAS based on H for Tilt Rotor Aircraft)

  • 이장호;유창선
    • 항공우주시스템공학회지
    • /
    • 제2권3호
    • /
    • pp.1-6
    • /
    • 2008
  • The tilt rotor aircraft has the flight characteristics which takes off vertically like a helicopter and flies forward like an airplane. Especially, the transition process from a helicopter to an airplane mode requires not only the mixing of control inputs but also the stability and controllability augmentation system(SCAS) in order to keep the safe flight because there are compound flight dynamic characteristics of a helicopter and an airplane including non-linearity, uncertainty. This paper describes the design of SCAS in a lateral motion for the tilt rotor aircraft based on the $H_{\infty}$ control method, which was performed from mathematical model with weighting matrix based on the relationship between the $H_{\infty}$ norm and the sensitivity function. Through simulation analysis for the controller designed on the $H_{\infty}$ control theory, it was shown that this method may be applied to the control design of the tilt rotor aircraft.

  • PDF

시간지연 퍼지 시스템의 보장비용 및 $H_{\infty}$ 필터링 (Guaranteed Cost and $H_{\infty}$ Filtering for Delayed Fuzzy Dynamic Systems)

  • 이갑래;조희수;박홍배
    • 전자공학회논문지SC
    • /
    • 제40권2호
    • /
    • pp.10-18
    • /
    • 2003
  • 본 논문은 시간지연을 갖는 퍼지 시스템에 대한 보장 비용과 H/sub ∞/ 외란감쇄 성능을 갖는 퍼지 필터링 문제를 다룬다. 본 연구는 외란감쇄에 대한 확장 L₂ 노옴 제한조건과 LQ 비용함수의 성능 상한치 제한조건을 만족하는 필터링 설계 방법이다. Lyapunov 함수를 이용하여 필터의 존재성에 대한 충분조건을 유도하고 선형행렬부등식(LMI: linear matrix inequality)으로 나타낸다. 필터 설계는 LMI 해를 구함으로써 바로 구할 수 있다. 제안한 방법의 설계 과정을 설명하기 위한 시뮬레이션 예제를 또한 나타낸다.

시변지연과 임의 발생 외란을 고려한 불확실 선형 시스템에 대한 지연의존 강인 H 제어 (Delay-dependent Robust H Control of Uncertain Linear Systems with Time-varying Delays and Randomly Occurring Disturbances)

  • 김기훈;박명진;권오민;차은종
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.679-687
    • /
    • 2013
  • This paper proposes a new condition about delay-dependent robust $H_{\infty}$ control of uncertain linear systems with time-varying delay and randomly occurring disturbances. The norm bounded uncertainties are subjected to the system matrices. Based on Lyapunov stability theory, a sufficient condition for designing a controller gain such that the closed-loop systems are asymptotically stable with $H_{\infty}$ disturbance level ${\gamma}$ is formulated in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are included to show the effectiveness of the presented method.

Some Properties on Receding Horizon $H_{\infty}$ Control for Nonlinear Discrete-time Systems

  • Ahn, Choon-Ki;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.460-465
    • /
    • 2004
  • In this paper, we present some properties on receding horizon $H_{\infty}$ control for nonlinear discrete-time systems. First, we propose the nonlinear inequality condition on the terminal cost for nonlinear discrete-time systems. Under this condition, noninceasing monotonicity of the saddle point value of the finite horizon dynamic game is shown to be guaranteed. We show that the derived condition on the terminal cost ensures the closed-loop internal stability. The proposed receding horizon $H_{\infty}$ control guarantees the infinite horizon $H_{\infty}$ norm bound of the closed-loop systems. Also, using this cost monotonicity condition, we can guarantee the asymptotic infinite horizon optimality of the receding horizon value function. With the additional condition, the global result and the input-to-state stable property of the receding horizon value function are also given. Finally, we derive the stability margin for the saddle point value based receding horizon controller. The proposed result has a larger stability region than the existing inverse optimality based results.

  • PDF

Robust market-based control method for nonlinear structure

  • Song, Jian-Zhu;Li, Hong-Nan;Li, Gang
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1253-1272
    • /
    • 2016
  • For a nonlinear control system, there are many uncertainties, such as the structural model, controlled parameters and external loads. Although the significant progress has been achieved on the robust control of nonlinear systems through some researches on this issue, there are still some limitations, for instance, the complicated solving process, weak conservatism of system, involuted structures and high order of controllers. In this study, the computational structural mechanics and optimal control theory are adopted to address above problems. The induced norm is the eigenvalue problem in structural mechanics, i.e., the elastic stable Euler critical force or eigenfrequency of structural system. The segment mixed energy is introduced with a precise integration and an extended Wittrick-Williams (W-W) induced norm calculation method. This is then incorporated in the market-based control (MBC) theory and combined with the force analogy method (FAM) to solve the MBC robust strategy (R-MBC) of nonlinear systems. Finally, a single-degree-of-freedom (SDOF) system and a 9-stories steel frame structure are analyzed. The results are compared with those calculated by the $H{\infty}$-robust (R-$H{\infty}$) algorithm, and show the induced norm leads to the infinite control output as soon as it reaches the critical value. The R-MBC strategy has a better control effect than the R-$H{\infty}$ algorithm and has the advantage of strong strain capacity and short online computation time. Thus, it can be applied to large complex structures.