• 제목/요약/키워드: $H_\infty$ control

검색결과 704건 처리시간 0.032초

Mixed $H_2/H_{\infty}$ Controller Realization with Entropy Integral

  • Lee, Sang-Hyuk;Kim, Ju-Sik
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.206-209
    • /
    • 2003
  • An $H_2$/$H_{\infty}$ -controller realization is carried out by considering an entropy integral. Using J-spectral factorization, the parametrizations of all $H_{\infty}$ stabilizing controllers are derived. By the relation of a mixed $H_2$/$H_{\infty}$ control problem and a minimum entropy/$H_{\infty}$ control problem, the mixed $H_2$/$H_{\infty}$-controller state-space realization is presented.

LMI 에 기초한 연속 냉간압연기의 H^{\infty} 서보 제어기 설계 (Design of an LMI- Based H^{\infty} Servo Controller for Tandem Cold Mill)

  • 김인수;황이철;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.25-34
    • /
    • 2000
  • In this paper, we design a H^\infty servo controller for gauge control of tandem cold mill. To improve the performance of the AGC(Aotomatic Gauge Control) system based on the Taylor linearized model of tandem cold mill, the H^\infty servo controller is designed to satisfy robust stability, disturbance attenuation and robust tracking properties. The H^\infty servo controller problem is modified as an usual H^\infty control problem, and the solvability condition of the H^\infty servo problem depends on the solvability of the modified H^\infty control problem. Since this modified problem does not satisfied standard assumptions for the H^\infty control problem, it is solved by an LMI(Linear Matrix Inequality) technique. Consequently, the comparison between the H^\infty servo controller and the existing PID/FF(FeedForward) controller shows the usefulness of this study.

  • PDF

수중운동체의 $H_\infty$ 심도제어기 설계 ($H_\infty$ Depth Controller Design for Underwater Vehicles)

  • 이만형;정금영;김인수;주효남;양승윤
    • 제어로봇시스템학회논문지
    • /
    • 제6권5호
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

도립진자 시스템에 선형 분수 표현법을 이용한 $H_2/ H_\infty$ 제어 (The $H_2/ H_\infty$ control of inverted pendulum system using linear fractional representation)

  • 곽칠성;최규열
    • 한국정보통신학회논문지
    • /
    • 제3권4호
    • /
    • pp.875-885
    • /
    • 1999
  • This paper presents an application of LMI-based techniques to the mixed $H_2/ H_\infty$ control of an inverted pendulum. The linear model of the inverted pendulum represented by an LFR(Linear Fractional Representation) model of uncertainties is derived. Considered uncertainties are three nonlinear components and a parameter uncertainty Augmenting the LFR model by adding weighting functions, we get a generalized plant, for which we design a mixed $H_2/ H_\infty$ controller using the LMI technique. To evaluate control performances and robust stability of the mixed $H_2/ H_\infty$ controller designed, we compare it with the $ H_\infty$controller through the simulation and experiment. The mixed $H_2/ H_\infty$ controller shows the better control performances and robust stability than the $H_\infty$controller in the sense of pendulum angle.

  • PDF

혼합 $H_{\infty}$ 최적화 기법을 이용한 견실 $H_{\infty}$ 증기발생기 수위제어기 설계 (Robust $H_{\infty}$ Controller Design for Steam Generator Water Level Control using Mixed $H_{\infty}$ Optimization Method)

  • 서성환;조희수;박홍배
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.363-369
    • /
    • 1999
  • In this paper, we design the robust $H_{\infty}$ controller for water level control of steam generator using a mixed $H_{\infty}$ optimization with model-matching method. Firstly we choose the desired model which has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant. Simulation results show that proposed robust $H_{\infty}$ controller at specific power operation has satisfactory performances against the variations of load power, steam flow rate, primary circuit coolant temperature, and feedwater temperature. It can be also observed that the proposed robust $H_{\infty}$ controller exhibits better robust stability than conventional PI controller.

  • PDF

슬라이딩 모드를 이용한 상태공간 H2H 제어기에 관한 연구 (A Study on State Space H2H Controller Using Sliding Mode)

  • 김민찬;박승규;안호균
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.868-873
    • /
    • 2003
  • $H_{\infty}$ control has been applied to the design of practical control systems widely because of its robustness. It can minimize $H_{\infty}$ norm of the transfer function between the desired output and the disturbances. The SMC(Sliding Mode Control) is more robust and give the better performance than the $H_{\infty}$ control if the matching condition is satisfied. A controller which can have the advantages of $H_{\infty}$ control and the SMC is proposed to add the robustness of the SMC to the $H_{\infty}$ controller. Its design is based on the augmented system of which dynamics have one higher order than that of the original system and has the same dynamic as the desired system in spite of uncertainties. The dynamic of proposed sliding surface is the same dynamic as the system controlled by $H_{\infty}$ controller without the uncertainties which satisfy the matching condition.

Robust $H_{\infty}$ Control for Bilinear Systems with Parameter Uncertainties via output Feedback

  • Kim, Young-Joong;Lee, Su-Gu;Chang, Sae-Kwon;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.386-391
    • /
    • 2003
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties and exogenous disturbance via output feedback. $H_{\infty}$ control is achieved via separation into a $H_{\infty}$ state feedback control problem and a $H_{\infty}$ state estimation problem. The suitable robust stabilizing output feedback control law can be constructed in term of approximated solution to x-dependent Riccati equation using successive approximation technique. Also, the $H_{\infty}$ filter gain can be constructed in term of solution to algebraic Riccati equation. The output feedback control robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop systems in the face of parameter uncertainties and exogenous disturbance.

  • PDF

예견 및 $H_{\infty}$ 제어기법에 의한 연속 냉간 압연시스템의 두께 제어 (Thickness Control of Tandem Cold Mills Using Preview and $H_{\infty}$ Control Techniques)

  • 김승수;김종식
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.529-536
    • /
    • 2000
  • A robust controller to attenuate the various disturbances of tandem cold mills (TCM) is synthesized by measurement-feedback $H_{\infty}$ control techniques which can reflect the input direction of disturbances and the knowledge of entry thickness variation (disturbance) is synthesized by discrete-time measurement-feedback $H_{\infty}$ control theory. It is demonstrated that the $H_{\infty}$ preview control gain can be easily obtained by the seperation principle of the control and estimation problems in $H_{\infty}$ control. Finally the effectiveness of the proposed control method for TCM is evaluated by the computer simulation and compared to the other control methods which have been previously studied.

  • PDF

무인 수중운동체의 $H_{\infty}$ 심도 및 방향 제어기 설계 ($H_{\infty}$ Depth and Course Controllers Design for Autonomous Underwater Vehicles)

  • 양승윤
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2980-2988
    • /
    • 2000
  • In this paper, H(sub)$\infty$ depth and course controllers of autonomous underwater vehicles using H(sub)$\infty$ servo control are proposed. An H(sub)$\infty$ servo problem is foumulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H(sub)$\infty$servo problem is as follows; firest, this problem is modified as an H(sub)$\infty$ control problem for the generalized plant that includes a reference input mode, and than a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach, The H(sub)$\infty$depth and course controllers are designed to satisfy the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(was force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controlled are evaluated with computer simulations, and finally these simulation results show the usefulness and applicability of the propose H(sub)$\infty$ depth and course control systems.

Parallel Robust $H_{\infty}$ Control for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.689-696
    • /
    • 2006
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of weakly coupled bilinear systems with time-varying parameter uncertainties and exogenous disturbance using the successive Galerkin approximation(SGA). By using weak coupling theory, the robust $H_{\infty}$ control can be obtained from two reduced-order robust $H_{\infty}$ control problems in parallel. The $H_{\infty}$ control theory guarantees robust closed-loop performance but the resulting problem is difficult to solve for uncertain bilinear systems. In order to overcome the difficulties inherent in the $H_{\infty}$ control problem, two $H_{\infty}$ control laws are constructed in terms of the approximated solution to two independent Hamilton-Jacobi-Isaac equations using the SGA method. One of the purposes of this paper is to design a closed-loop parallel robust $H_{\infty}$ control law for the weakly coupled bilinear systems with parameter uncertainties using the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.