• 제목/요약/키워드: $H^{1}$ norm error

검색결과 21건 처리시간 0.019초

QUADRATURE ERROR OF THE LOAD VECTOR IN THE FINITE ELEMENT METHOD

  • Kim, Chang-Geun
    • Journal of applied mathematics & informatics
    • /
    • 제5권3호
    • /
    • pp.735-748
    • /
    • 1998
  • We analyze the error in the p version of the of the finite element method when the effect of the quadrature error is taken in the load vector. We briefly study some results on the $H^{1}$ norm error and present some new results for the error in the $L^{2}$ norm. We inves-tigate the quadrature error due to the numerical integration of the right hand side We present theoretical and computational examples showing the sharpness of our results.

ERROR ESTIMATION OVER THE POLYGONAL DOMAINS BY THE FINITE ELEMENT METHOD

  • Kim, Chang-Geun
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.311-320
    • /
    • 2002
  • For second order linear elliptic problems over smooth domains, it is well known that the rate of convergence of the error in the $L_2$norm is one order higher than that in the $H^1$norm. For polygonal domains with reentrant corners, it has been shown in [15] that this extra order cannot be fully recovered when the h-version is used. We present theoretical and computational examples showing the sharpness of our results.

ERROR ESTIMATES OF RT1 MIXED METHODS FOR DISTRIBUTED OPTIMAL CONTROL PROBLEMS

  • Hou, Tianliang
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.139-156
    • /
    • 2014
  • In this paper, we investigate the error estimates of a quadratic elliptic control problem with pointwise control constraints. The state and the co-state variables are approximated by the order k = 1 Raviart-Thomas mixed finite element and the control variable is discretized by piecewise linear but discontinuous functions. Approximations of order $h^{\frac{3}{2}}$ in the $L^2$-norm and order h in the $L^{\infty}$-norm for the control variable are proved.

A METHOD FOR STRUCTURED LINEAR TOTAL LEAST NORM ON BLIND DECONVOLUTION PROBLEM

  • Oh, Se-Young;Kwon, Sun-Joo;Yun, Jae-Heon
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.151-164
    • /
    • 2005
  • The regularized structured total least norm (RSTLN) method finds an approximate solution x and error matrix E to the overdetermined linear system (H + E)x $\approx$ b, preserving structure of H. A new separation scheme by parts of variables for the regularized structured total least norm on blind deconvolution problem is suggested. A method combining the regularized structured total least norm method with a separation by parts of variables can be obtain a better approximated solution and a smaller residual. Computational results for the practical problem with Block Toeplitz with Toeplitz Block structure show the new method ensures more efficiency on image restoration.

SUPERCONVERGENCE AND A POSTERIORI ERROR ESTIMATES OF VARIATIONAL DISCRETIZATION FOR ELLIPTIC CONTROL PROBLEMS

  • Hua, Yuchun;Tang, Yuelong
    • Journal of applied mathematics & informatics
    • /
    • 제32권5_6호
    • /
    • pp.707-719
    • /
    • 2014
  • In this paper, we investigate a variational discretization approximation of elliptic optimal control problems with control constraints. The state and the co-state are approximated by piecewise linear functions, while the control is not directly discretized. By using some proper intermediate variables, we derive a second-order convergence in $L^2$-norm and superconvergence between the numerical solution and elliptic projection of the exact solution in $H^1$-norm or the gradient of the exact solution and recovery gradient in $L^2$-norm. Then we construct a posteriori error estimates by using the superconvergence results and do some numerical experiments to confirm our theoretical results.

A FINITE DIFFERENCE/FINITE VOLUME METHOD FOR SOLVING THE FRACTIONAL DIFFUSION WAVE EQUATION

  • Sun, Yinan;Zhang, Tie
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.553-569
    • /
    • 2021
  • In this paper, we present and analyze a fully discrete numerical method for solving the time-fractional diffusion wave equation: ∂βtu - div(a∇u) = f, 1 < β < 2. We first construct a difference formula to approximate ∂βtu by using an interpolation of derivative type. The truncation error of this formula is of O(△t2+δ-β)-order if function u(t) ∈ C2,δ[0, T] where 0 ≤ δ ≤ 1 is the Hölder continuity index. This error order can come up to O(△t3-β) if u(t) ∈ C3 [0, T]. Then, in combinination with the linear finite volume discretization on spatial domain, we give a fully discrete scheme for the fractional wave equation. We prove that the fully discrete scheme is unconditionally stable and the discrete solution admits the optimal error estimates in the H1-norm and L2-norm, respectively. Numerical examples are provided to verify the effectiveness of the proposed numerical method.

$H_\infty$ 제어기법을 적응한 다중비 필터 뱅크의 설계 (A Design of Mutirate Filter flanks using Un Control Approach)

  • 이상철;박종우;박계원
    • 한국정보통신학회논문지
    • /
    • 제5권6호
    • /
    • pp.1089-1093
    • /
    • 2001
  • 다중비 필터뱅크의 합성 필터 선계 문제에 H$\infty$ 제어기법을 적용한다. 순수한 시간 지연 시스템을 기준 모델로 설정하여 이 지연 시스템과 다중비 필터 뱅크와의 오차 시스템을 고려한다. 설계 하고자 하는 합성 필터는 오차 시스템의 ι$_2$-유도된 노름을 최소화하도록 설계한다.

  • PDF

A CONSERVATIVE NONLINEAR DIFFERENCE SCHEME FOR THE VISCOUS CAHN-HILLIARD EQUATION

  • Choo, S.M.;Chung, S.K.
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.53-68
    • /
    • 2004
  • Numerical solutions for the viscous Cahn-Hilliard equation are considered using the Crank-Nicolson type finite difference method which conserves the mass. The corresponding stability and error analysis of the scheme are shown. The decay speeds of the solution in $H^1-norm$ are shown. We also compare the evolution of the viscous Cahn-Hilliard equation with that of the Cahn-Hilliard equation numerically and computationally, which has been given as an open question in Novick-Cohen[13].

QUADRATURE BASED FINITE ELEMENT METHODS FOR LINEAR PARABOLIC INTERFACE PROBLEMS

  • Deka, Bhupen;Deka, Ram Charan
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.717-737
    • /
    • 2014
  • We study the effect of numerical quadrature in space on semidiscrete and fully discrete piecewise linear finite element methods for parabolic interface problems. Optimal $L^2(L^2)$ and $L^2(H^1)$ error estimates are shown to hold for semidiscrete problem under suitable regularity of the true solution in whole domain. Further, fully discrete scheme based on backward Euler method has also analyzed and optimal $L^2(L^2)$ norm error estimate is established. The error estimates are obtained for fitted finite element discretization based on straight interface triangles.