• Title/Summary/Keyword: $H^{\infty}$ controller

Search Result 572, Processing Time 0.026 seconds

Design of Missile Autopilot using Intelligent Control Techniques (지능 제어 기법을 이용한 유도탄 자동 조종 장치 설계)

  • 김윤식;한웅기;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.458-463
    • /
    • 1998
  • This paper presents an autopilot design method for STT missiles using the intelligent control technique and multiple controllers. The mixed $H_2/H_{\infty}$ control technique is applied for each controller design and the control gains are implemented by using the genetic searching algorithm. To facilitate automatic switching of multiple controllers under different operating conditions, an error based switching scheme is also combined with the multiple controllers at a higher level, which constitutes a hierarchical intelligent control system. It is shown via computer simulation that the proposed autopilot outperforms the conventional one.

  • PDF

Robust $H_{\infty}$ Controller for State and Input Delayed Systems with Structured Uncertainties (구조화된 불확실성과 상태와 입력에 시간지연이 있는 시스템을 위한 강인 $H_{\infty}$ 제어기)

  • Lee, Joon-Hwa;Moon, Young-Soo;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.338-342
    • /
    • 1997
  • 본 논문에서는 상태와 입력에 시간지연과 구조화된 불확실성이 있는 시스템을 위한 강인 H/sub .inf./ 제어기를 제안한다. 제안된 제안기는 시간지연의 크기에 관계없이 항상 불확실한 시스템을 안정화시키고, 또한 제한된 크기의 어떤 구조화된 불확실성에 대해서도 항상 폐루프 전달함수의 H/sub .inf./ 노옴의 크기를 주어진 레벨 이하로 줄인다. 제어기는 볼록 최적화 알고리즘을 이용한 LMI 문제를 풀어서 구한다.

  • PDF

Multiobjective State-Feedback Control of Beams with Piezoelectric Device (압전체가 부착된 보의 다목적 상태궤한제어)

  • Park, Chul-Hue;Hong, Seong-Il;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.828-833
    • /
    • 2004
  • The performance of a mixed $H_{\infty}/H_2$ design with pole placement constraints based on robust vibration control for a piezo/beam system is investigated. The governing equation of motion for the piezo/beam system is derived by Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed by $H_{\infty}/H_2$ feedback control law that satisfies additional constraints on the closed-loop pole location in the face of model uncertainties, which are derived for a general class of convex regions of the complex plane. These constraints are expressed in terms of linear matrix inequalities (LMIs) approach for the multiobjective synthesis. The validity and applicability of this approach for vibration suppressions of SMART structural systems are discussed by damping out the multiple vibrational modes of the piezo/beam system.

  • PDF

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.

The Robust Control of Two Mass Spring System (2관성 공진 시스템의 강건제어)

  • 조도현;이종용;이상철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.76-86
    • /
    • 1998
  • The Two-Mass Spring(TMS or Two-Inertia Resonance) system is one of the simplest models which generate a torsional vibration. In this system, it is required to design a controller achieving the control performance while suppressing the torsional vibration. In this paper, we compared and considered with the state feedback effects for the TMS system. By connecting each controller design to the state feedback control, we could predict each controller performances and decide weighting functions and parameters of LQ and $H_\infty$ controller.

  • PDF

1-DOF Haptic Interface Controller Design considering Transparency and Robust Stability (투명성과 강인 안정성을 고려한 1자유도 햅틱 인터페이스 제어기 설계)

  • Eom, Gwang-Sik;Seo, Il-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.213-219
    • /
    • 2000
  • In this paper, a controller design method is proposed for haptic interface considering transparency and robust stability. For this, a performance index for the transparency as performance measure is defined in the points of impedance matching and the optimal solution which is minimizing the performance index is obtained by solving H2 optimal problem. In haptic interface, the modeling uncertainties can be restricted to that of haptic device. To implement the robust stabilizing haptic controller to the uncertainties of haptic device, a robust stable condition using H$\infty$ norm from small gain theorem is proposed. To verify the effectiveness of the proposed haptic controller design scheme, numerical examples and experimental results are illustrated for virtual wall consisting of stiffness and damping factor.

  • PDF

LMI-based Design of PI-type H∞ Controller for Poly topic Models (폴리토픽 모델을 위한 PI 형 H∞ 제어기의 LMI 기반 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.255-257
    • /
    • 2009
  • The robust stabilization problem of a multivariable uncertain system with a polytopic model is considered. A PI-type $H_{\infty}$ controller with a low pass filter is used for robust stabilization and noise rejection. The problem is reduced to an LMI optimization problem. A sufficient condition for the existence of the PI controller is derived in terms of LMIs. The PI gain matrices are parameterized by using the solution matrices to the existence conditions. Finally, a numerical design example is given.

A Robustness Control of Magnetic Levitation System Using Linear Matrix Inequality (선형행렬부등식을 이용한 자기 부상계의 강인성 제어)

  • Kim, C.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.79-85
    • /
    • 1999
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor system because of little friction, no lubrication, no noise and so on. The magnetic levitation system needs the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of sensor easily goes into troublesome caused by sensor failure discord between the measurement point and the control point etc. This paper gives a controller design method of magnetic levitation system which satisfies the given $H_{\infty}$ control performance and the robust stability of the presence of physical parameter perturbations. To the end, we investigated the validity of the designed controller through results of simulation.

  • PDF

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.