• Title/Summary/Keyword: $H^+/K^+$-ATPase

Search Result 236, Processing Time 0.023 seconds

Effect of Certain Herb Extracts on Renal Function and $Na^+-K^+$-ATPase in Rabbit Kidney (수종 생약제가 신기능 및 신장 $Na^+-K^+$ ATPase에 미치는 영향)

  • Kim I.S.;Yeom Y.H.;Lee S.B.;Cho B.H.;Cho K.C.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.1 s.26
    • /
    • pp.51-56
    • /
    • 1980
  • Phytolaccae Radix (PR), Brunella Herba (BH), Akebiae Lignum (AL) and Atractylis Rhizoma (AR) are some of the diuretic agents used in Chinese medicine and folk remedy. Water or methanol extracts of them (100mg/kg) were intravenously injected to rabbits in order to re-evaluate the effects on renal function. PR water extract elicited moderate diuresis while water extracts of BH, AL and methanol extract of AR had antidiuretic effects. Influence of PR on renal hemodynamics and $Na^+-K^+$-ATPase activity in rabbit kidney were observed in vivo and in vitro. The results were as follows: 1) Clearances of inulin and p-aminohippuric acid increased significantly after 15 minutes following the administration of PR water extract, but Na+ reabsorption rate was not changed. 2) The increase of $Na^+-K^+$-ATPase activity in renal cortex, outer and inner medulla was observed at 15 minutes after PR water fraction was given intravenously, and the change was most prominent in cortical area. 3) More than 50% of decrease in $Na^+-K^+$-ATPase activity in renal tissues was observed with PR water fraction $(10^{-2}g/ml)$ in vitro experiments. However, the inhibition of $Na^+-K^+$-ATPase activity was reversed with lower concentrations $(10^{-4}g/ml,\;10^{-6}g/ml)$ of PR water fraction in outer and inner medullary zone. These results suggest the diuretic effect of PR is due to improved renal hemodynamics, and contradictory reults concerning $Na^+-K^+$-ATPase activity require further investigation.

  • PDF

Novel $Ca^{2+}$-ATPase Found in the Human Milk Membrane Fraction

  • Cho, Jin-Kook;Kanno, Choemon
    • 한국유가공학회:학술대회논문집
    • /
    • 1997.05a
    • /
    • pp.23-34
    • /
    • 1997
  • Calcium-stimulated ATPase ($Ca^{2+}$-ATPase) which has optimal pH value at 7.0 was found in the membrane fraction of human milk, and its enzymatic properties were studied. The purified $Ca^{2+}$-ATPase required 0.45 mM Ca ion for maximal activity. Among the nucleosides, $Ca^{2+}$-ATPase showed a higher substrate specificity to ATP and UTP than to CTP and GTP. $Ca^{2+}$-ATPase had apparent Km value of 0.065, and V max of 7.63 mol ATP hydrolyzed/mg pro-tein per min, respectively. $Ca^{2+}$-ATPase was potently inhibited by lanthanide, vanadate, and p-chloromercuribenzoate, and inactivated by EDTA, and CDTA and EGTA, but were unaffected by N-ethylmaleimide, $NaN_3$, ouabain, or oligomycin, and was completely inactivated by heating at $60^{\circ}C$ for 10 min. This enzyme activity was concentrated in the membrane fraction of the cream and skim milk membrane, but not founded in bovine milk.

  • PDF

Studies on the Development of Photoreceptor in the Nonchromatophore Organisms (II) - Effects of organic compound and metal ion influx of Light-Induced Mitochondrial ATPase in the Lentinus edodes(Berk.) Sing - (무흡광색소 식물의 감광수용체 개발 연구(II) - 표고버섯의 광감응성 mitochondrial ATPase의 유기물 및 금속이온 유입 효과 -)

  • Min, Tae-Jin;Cho, Suck-Woo;Kim, Young-Soon;Kim, Jae-Woong;Mheen, Tae-Ick
    • The Korean Journal of Mycology
    • /
    • v.15 no.4
    • /
    • pp.224-230
    • /
    • 1987
  • Effects Of organic compound, photosensitizer and $K^+$ ion influx. On the light-induced ATPase of mitochondria in L. edodes purified by linear sucrose density gradient centrifugation were studied. The mitochondrial ATPase activity was investigated by various wavelength illumination at dark state. The mitochondrial ATPase was activated 139% and 128% by 10m mol dithiothreitol and 0.1m mol quinacrine, respectively. This enzyme also was activated 36% by 0.1m mol phenazine methosulfate as photosensitizer. But, 100 mg oligomycin and 1m mol phlorizin inhibited activity of enzyme to 48% and 45%, respectively. Its optimum wavelength was 690 nm on the effect of $K^+$ ion influx, its optimum pH and temperature were found to be 7.2 and $55^{\circ}C$.

  • PDF

Studies on the Light-Induced Mitochondrial ATPase in Pleurotus ostreatus (느타리버섯 중의 광감응성 Mitochondrial ATPase에 관한 연구)

  • Lee, Kap-Duk;Min, Tae-Jin
    • The Korean Journal of Mycology
    • /
    • v.17 no.4
    • /
    • pp.169-176
    • /
    • 1989
  • Mitochondria in Pleurotus ostreatus was purified by stepped sucrose density gradient centrifugation. The activity of mitochondrial ATPase has been investigated during various times of illumination at each wavelength in the range of 400 nm to 700 nm. The mitochondrial ATPase activity was simulated 1,7 fold by 580 nm illumination compared with the broad wavelength group. The mitochondrial ATPase activity according to various times of illumination was stimulated 2.2 fold for 10 seconds at 580 nm compared with the broad wavelength group. The optimum pH and temperature of the mitochondrial ATPase were 7.4 and $60^{\circ}C$, respectively. The activity of this enzyme was stimulated by 5 mmol $Fe^{3+}$, 5 mmol $Mg^{2+}$, 0.1 mmol $Ca^{2+}$ and 5 mmol $Fe^{2+}$ ion, but inhibited by 5 mmol $Na^{+}$ ion.

  • PDF

Action of Serotonin on Sodium-Potassium Activated ATPase in Rabbit Red Cell Membrane (토끼 적혈구막의 NaK ATPase의 활성도에 대한 serotonin의 작용)

  • Chung, Soon-Tong;Park, Chul-Bin;Koh, Il-Sup
    • The Korean Journal of Physiology
    • /
    • v.10 no.1
    • /
    • pp.25-34
    • /
    • 1976
  • The action of serotonin on the sodium plus potassium activated ATPase activity in the rabbit red cell membrane has been investigated. The experiments were also designed to determine the mechanism of action of serotonin on the ATPase activity. The following results were obtained. 1) The NaK ATPase activity of rabbit red cell ghosts is stimulated by low concentration of serotonin but inhibited by higher concentration, and the concentration of serotonin for maximal activity is about 2mM. The pH optimum for the serotonin sensitive component is 8.0. 2) The activating effect of serotonin on the ATPase, with a given concentration of sodium in the medium, is increased by raising the potassium concentration but the ratio of activity is decreased. 3) The activating effect of serotonin on the ATPase, with a given concentration of potassium in the medium, is increased by raising the sodium concentration but the ratio of activity is decreased. 4) The ATPase activity is increased by small amounts of calcium but inhibited by larger amounts and the ratio of activity by serotonin is decreased by small amounts of calcium but increased by larger amounts. 5) The action of serotonin on the ATPase activity was not related to the amino group of lysine, the hydroxyl group of threonine, the carboxyl group of aspartic acid, or the imidazole group of histidine. 6) The action of serotonin on the ATPase activity is due to sulfhydryl group of the enzyme of NaK ATPase.

  • PDF

Gill Na+/K+-ATPase Activity and Expression in Black Sea Bream Acanthopagrus schlegelii Exposed to a Hyposaline Environment (저염분 노출에 따른 감성돔(Acanthopagrus schlegelii) 아가미의 Na+/K+-ATPase 활성 및 발현)

  • Min, Byung Hwa;Park, Mi Seon;Myeong, Jeong-In;Seo, Jeong Soo;Park, Jung Jun;Noh, Gyeong Eon;Kang, Duk Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • We investigated the branchial osmoregulatory response of black sea bream Acanthopagrus schlegelii to short-term (3-48 h) exposure to a hyposaline environment (5 psu). Gill $Na^+/K^+$-ATPase (NKA) activity was decreased after 3 h in fish transferred to 5 psu compared to salt water-acclimated (control) fish, but the level of activity returned to that observed in the control fish at 6 h after transfer. NKA activity increased significantly at 24 h after transfer, but it returned to the level observed in the control fish at 48 h after transfer. Immunohistochemical staining revealed that gill NKA was localized to chloride cells. The number of chloride cells tended to change in parallel with NKA activity. Substantial decreases in plasma $Na^+$, $Cl^-$, and osmolality were observed after 12 h of exposure to 5 psu; however, these parameters began to recover to the values detected in the controls at 24 h after transfer. In conclusion, our results suggest that black sea bream are able to adjust their osmoregulatory mechanisms to shift from hypo- to hyperosmoregulation within 6 h of exposure to a hypoosmotic environment.

Immunochemical Studies for the Characterization of Purified $(Na^+,\;K^+)-ATPase$ and Its Subunits with a Special Reference of Their Effect on Monovalent Cation Transport in Reconstituted $(Na^+,\;K^+)-ATPase$ Vesicles

  • Rhee, H.M.;Hokin, L.E.
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.35-49
    • /
    • 1990
  • A highly purified $(Na^+,\;K^+)-ATPase$ from the rectal gland of Squalus acanthias and from the electric organ of Electrophorus electricus has been used to raise antibodies in rabbits. The 97,000 dalton catalytic subunit and glycoprotein derived from the rectal gland of spiny shark were also used as antigens. The two $(Na^+,\;K^+)-ATPase$ holoenzymes and the two shark subunits were antigenic. In Ouchterlony double diffusion experiments, these antibodies formed precipitation bands with their antigens. Antibodies prepared against the two subunits of shark holoenzyme also formed precipitation bands with their antigens and shark holoenzyme, but not with eel holoenzyme. These observations are in good agreement with inhibitory effect of these antibodies on the catalytic activity of $(Na^+,\;K^+)-ATPase$ both from the shark and the eel, since there is very little cross-reaction between the shark anticatalytic subunit antibodies and the eel holoenzyme. The maximum antibodies titer of the anticatalytic subunit antibodies is found to be 6 weeks after the initial single exposure to this antigen. Multiple injections of the antigen increased the antibody titer. However, the time required to produce the maximum antibody titer was approximately the same. These antibodies also inhibit catalytic activity of $(Na^+,\;K^+)-ATPase$ vesicles reconstituted by a slow dialysis of cholate after solubilization of the enzyme in a presonicated mixture of cholate and phospholipid. In these reconstituted $(Na^+,\;K^+)-ATPase$ vesicles, effects of these antibodies on the fluxes of $Na^+$, $Rb^+$, and $K^+$ were investigated. Control or preimmune serum had no effect on the influx of $^{22}Na^+$ or the efflux of $^{86}Rb^+$. Immunized sera against the shark $(Na^+,\;K^+)-ATPase$ holoenzyme, its glycoprotein or catalytic subunit did inhibit the influx of $^{22}Na^+$ and the efflux of $^{86}Rb^+$. It was also demonstrated that these antibodies inhibit the coupled counter-transport of $Na^+$ and $K^+$ as studied by means of dual labeling experiments. However, this inhibitory effect of the antibodies on transport of ions in the $(Na^+,\;K^+)-ATPase$ vesicles is manifested only on the portion of energy and temperature dependent alkali metal fluxes, not on the portion of ATP and ouabain insensitive ion movement. Simultaneous determination of effects of the antibodies on ion fluxes and vesicular catalytic activity indicates that an inhibition of active ion transport in reconstituted $(Na^+,\;K^+)-ATPase$ vesicles appears to be due to the inhibitory action of the antibodies on the enzymatic activity of $(Na^+,\;K^+)-ATPase$ molecules incorporated in the vesicles. These findings that the inhibitory effects of the antibodies specific to $(Na^+,\;K^+)-ATPase$ or to its subunits on ATP and temperature sensitive monovalent cation transport in parallel with the inhibitory effect of vesicular catalytic activity by these antibodies provide direct evidence that $(Na^+,\;K^+)-ATPase$ is the molecular machinery of active cation transport in this reconstituted $(Na^+,\;K^+)-ATPase$ vesicular system.

  • PDF

Isolation and Characterization of Endosome Subpopulation in Chinese Hamster Ovarian Cells

  • Suh, Duk-Joon;Park, Mi-Yeon;Jung, Dong-Keun;Bae, Hae-Rahn
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.197-208
    • /
    • 1996
  • Endosomes lower their internal pH by an ATP-driven proton pump, which is critical to dissociation of many receptor-ligand complexes, the first step in the intracellular sorting of internalized receptors and ligands. Endosomes are known to exhibit n great range of pH values that can vary between 5.0 and 7.0 within a single cell although the factors that regulate endosomal pH remain uncertain. To evaluate the morphological and topological differences of endosomes in the different stages, confocal microscopy was used. The early endosomes labeled with fluorescein isothiocyanate-dextran for 10 min at $37^{\circ}C$ were identifiable at the peripheral and tubule-vesicular endosome compartment. In contrast, the late endosomes formed by 10 min pulse and 20 min trace were located deeper in the cytoplasm and showed more vesicular features than early endosomes. For the purpose of determining whether ATP-dependent acidification was heterogeneous and whether the differences in acidification were attributed to differences in the activity of $Na^{+}-K^{+}$-ATPase and/or $Cl^{-}$ channel, endocytic compartments were fractionated into subpopulation using percoll gradient and measured ATP-dependent acidification. While all fractions exhibited ATP-dependent acidification activity, both the initial rate of acidification and extent of proton translocation were lower in early endosomes and gradually increased in late endosomes. Phosphorylation by PKA and ATP enhanced ATP-dependent acidification in both early and late endosomes, hut there was no difference in the degree of enhancement by phosphorylation between two subpopulations. When ATP-dependent acidification was determined in the presence or absence of vanadate ($Na_{3}VO_{4}$) or ouabain, only early endosomes exhibited the vanadate or ouabain dependent stimulation of acidification activity, suggesting the inhibition of $Na^{+}-K^{+}$-ATPase. Therefore, it seems probable that the inhibition of early endosome acidification by $Na^{+}-K^{+}$-ATPase observed in vitro at least in part plays a physiological role in controlling the acidification of early endosomes in vivo.

  • PDF

Purification and Characterization of ($Ca^{2+}$+$Mg^{2+}$)-ATPase of Sarcoplasmic Reticulum from Rat Skeletal Muscle (쥐 근소포체의 ($Ca^{2+}$+$Mg^{2+}$)-ATPase의 분리정제와 그 효소특성에 관하여)

  • Lee, Jong-Soon;Ha, Doo-Bong;Chung, Chin-Ha
    • The Korean Journal of Zoology
    • /
    • v.28 no.1
    • /
    • pp.31-43
    • /
    • 1985
  • The $(Ca^{2+}+Mg^{2+})$-ATPase has been purified homogeneously from sarcoplasmic reticulum of rat skeletal muscle by sucrose density gradient centrifugation. The purified enzyme has a molecular weight of 115,000 as judged by polyacrylamide gel electrophoresis in the presence of sodium dedecyl sulfate, and therefore has the same size of the enzyme in rabbit and chick skeletal muscle. $Ca^{2+}, Mg^{2+}, Fe^{2+}, Co^{2+}, and Mn^{2+}$ at 50 $\\muM$ show stimulatory effect on the ATP-ase, while $Zn^{2+}, Cu^{2+}, and Hg^{2+}$ inhibit it at the same concentration. The ATPase activity is insensitive to antimalarial drugs such as quinine and quinacrine, but is sensitive to inhibition by p-hydroxymecurie benzoate and phenylmethylsulfonylfluoride. The enzyme has optimum pH of 6 to 7 and Km value for ATP is estimated to be 98 $\\muM$. Thus, a number of biochemical properties of this enzyme appear to be different from those of the enzyme that have been isolated from rabbit skeletal muscle. The $(Ca^{2+}+Mg^{2+})$-ATPase appears to be selectively degraded in microsomal fraction. The activity of metalloendoprotease is evident in the microsomal preparation when assayed by radioactively labeled protein substrate, such as $^{3}H-casein and $^{125}I$-insulin. However, it is presently unclear whether the metalloendoprotease is responsible for the degradation of the $(Ca^{2+}+Mg^{2+})$-ATPase.

  • PDF

pH Stress Alters Cytoplasmic Membrane Fluidity and atpB Gene Expression in Streptococcus mutans (pH stress가 Streptococcus mutans의 형질막 유동성 및 atpB 유전자 발현에 미치는 영향)

  • Cho, Chul Min;Jung, Seung Il;Kim, Myung Sup;Lee, Sae A;Kang, Jung Sook
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Streptococcus mutans (S. mutans), which plays a major role in the etiology of human dental caries, is able to tolerate exposure to acid shock in addition to its acidogenicity. We investigated the effects of pH stress on membrane fluidity, activities and expression levels of F-ATPase, and proton permeability in S. mutans. Using 1,6-diphenyl-1,3,5-hexatriene, we observed membrane ordering at pH 4.8 and pH 8.8. The ordering effects were larger at pH 4.8 in cytoplasmic membranes isolated from S. mutans (CMSM). Increasing pH resulted in a decrease in the activities and expression levels of F-ATPase. The proton permeability was decreased at both acidic and alkaline pHs, and the lowest permeability was observed at pH 4.8. The lower permeability at pH 8.8 than pH 6.8 is likely to be caused by the decreased proton influx due to the decreased CMSM fluidity. In addition, it seems to be evident that extremely low permeability at pH 4.8 was caused by the decreased proton influx due to the decreased CMSM fluidity as well as the increased proton efflux due to the increased activity and expression level of F-ATPase. It is likely that CMSM fluidity and F-ATPase activity are two major key factors that determine proton permeability in S. mutans. We suggest that CMSM fluidity plays an important role in the determination of proton permeability, which sheds light on the possibility of using nonspecific membrane fluidizers, e.g., ethanol, for anti-caries purposes.