Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.1.15

pH Stress Alters Cytoplasmic Membrane Fluidity and atpB Gene Expression in Streptococcus mutans  

Cho, Chul Min (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University)
Jung, Seung Il (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University)
Kim, Myung Sup (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University)
Lee, Sae A (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University)
Kang, Jung Sook (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University)
Publication Information
Journal of Life Science / v.27, no.1, 2017 , pp. 15-22 More about this Journal
Abstract
Streptococcus mutans (S. mutans), which plays a major role in the etiology of human dental caries, is able to tolerate exposure to acid shock in addition to its acidogenicity. We investigated the effects of pH stress on membrane fluidity, activities and expression levels of F-ATPase, and proton permeability in S. mutans. Using 1,6-diphenyl-1,3,5-hexatriene, we observed membrane ordering at pH 4.8 and pH 8.8. The ordering effects were larger at pH 4.8 in cytoplasmic membranes isolated from S. mutans (CMSM). Increasing pH resulted in a decrease in the activities and expression levels of F-ATPase. The proton permeability was decreased at both acidic and alkaline pHs, and the lowest permeability was observed at pH 4.8. The lower permeability at pH 8.8 than pH 6.8 is likely to be caused by the decreased proton influx due to the decreased CMSM fluidity. In addition, it seems to be evident that extremely low permeability at pH 4.8 was caused by the decreased proton influx due to the decreased CMSM fluidity as well as the increased proton efflux due to the increased activity and expression level of F-ATPase. It is likely that CMSM fluidity and F-ATPase activity are two major key factors that determine proton permeability in S. mutans. We suggest that CMSM fluidity plays an important role in the determination of proton permeability, which sheds light on the possibility of using nonspecific membrane fluidizers, e.g., ethanol, for anti-caries purposes.
Keywords
atpB gene expression; membrane fluidity; pH stress; proton permeability; Streptococcus mutans;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Quivey, R. G., Faustoferri, R., Monahan, K. and Marquis, R. 2000. Shifts in membrane fatty acid profiles associated with acid adapation of Streptococcus mutans. FEMS Microbiol. Lett. 189, 89-92.   DOI
2 Quivey, R. G., Grayhack, E. J., Faustoferri, R. C., Hubbard, C. J., Baldeck, J. D., Wolf, A. S., MacGilvray, M. E., Rosalen, P. L., Scott-Anne, K., Santiago, B., Gopal, S., Payne, J. and Marquis, R. E. 2015. Functional profiling in Streptococcus mutans: construction and examination of a genomic collection of gene deletion mutants. Mol. Oral Microbiol. 30, 474-495.   DOI
3 Quivey, R. G., Kuhnert, W. L. and Hahn, K. 2000. Adaptation of oral streptococci to low pH. Adv. Microb. Physiol. 42, 239-274.
4 Zhang, G. J., Liu, H. W., Yang, L., Zhong, Y. G. and Zheng, Y. Z. 2000. Influence of membrane physical state on the lysosomal proton permeability. J. Membr. Biol. 175, 53-62.   DOI
5 Ajdic, D., McShan, W. M., McLaughlin, R. E., Savic, G., Chang, J., Carson, M. B., Primeaux, C., Tian, R., Kenton, S., Jia, H., Lin, S., Qian, Y., Li, S., Zhu, H., Najar, F., Lai, H., White, J., Roe, B. A. and Ferretti, J. J. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 99, 14434-14439.   DOI
6 Baker, J. L., Abranches, J., Faustoferri, R. C., Hubbard, C. J., Lemos, J. A., Courtney, M. A. and Quivey, R. G. 2015. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans. Mol. Oral Microbiol. 30, 496-517.   DOI
7 Baker, J. L., Faustoferri, R. C. and Quivey, R. G. 2016. Acidadaptive mechanisms of Streptococcus mutans-the more we know, the more we don't. Mol. Oral Microbiol. doi: 10.1111/omi.12162.   DOI
8 Ban, S. H., Kim, J. E., Pandit, S. and Jeon, J. G. 2012. Influences of Dryopteris crassirhizoma extract on the viability, growth and virulence properties of Streptococcus mutans. Molecules 17, 9231-9244.   DOI
9 Belli, W. A. and Marquis, R. E. 1991. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl. Environ. Microbiol. 57, 1134-1138.
10 Bencini, D. A., Shanley, M. S., Wild, J. R. and O'Donovan, G. A. 1983. New assay for enzymatic phosphate release: application to aspartate transcarbamylase and other enzymes. Anal. Biochem. 132, 259-264.   DOI
11 Bender, G. R., Sutton, S. V. and Marquis, R. E. 1986. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect. Immun. 53, 331-338.
12 Fozo, E. M. and Quivey, R. G. 2004. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl. Environ. Microbiol. 70, 929-936.   DOI
13 Gong, Y., Tian, X. L., Sutherland, T., Sisson, G., Mai, J., Ling, J. and Li, Y. H. 2009. Global transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple twocomponent systems involved in acid adaptation. Microbiology 155, 3322-3332.   DOI
14 Gutierrez, J. A., Crowley, P. J., Cvitkovitch, D. G., Brady, L. J., Hamilton, I. R., Hillman, J. D. and Bleiweis, A. S. 1999. Streptococcus mutans ffh, a gene encoding a homologue of the 54kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Microbiology 145, 357-366.   DOI
15 Hamilton, I. R. and Buckley, N. D. 1991 Adaptation by Streptococcus mutans to acid tolerance. Oral Microbiol. Immun. 6, 65-71.   DOI
16 Hamilton, I. R. and St, Martin, E. J. 1982. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenopyruvate phosphotransferase activity. Infect. Immun. 36, 567-575.
17 Hwang, G., Liu, Y., Kim, D., Sun, V., Aviles-Reyes, A., Kajfasz, J. K., Lemos, J. A. and Koo, H. 2016. Simultaneous spatiotemporal mapping of in situ pH and bacterial activity within an intact 3D microcolony structure. Scientific Reports. doi:10.1038/srep32841.   DOI
18 Lemos, J. A., Abranches, J. and Burne, R. A. 2005. Responses of cariogenic streptococci to environmental stresses. Curr. Issues Mol. Biol. 7, 95-108.
19 Koo, H., Falsetta, M. L. and Klein, M. I. 2013. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J. Dent. Res. 92, 1065-1073.   DOI
20 Kuhnert, W. L., Zheng, G., Faustoferri, R. C. and Quivey, R. G. 2004. The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J. Bacteriol. 186, 8524-8528.   DOI
21 Loesche, W. J. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50, 353-380.
22 Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
23 Mykytczuk, N. C., Trevors, J. T., Leduc, L. G. and Ferroni, G. D. 2007. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog. Biophys. Mol. Biol. 95, 60-82.   DOI
24 Petrackova, D., Becer, J., Svobodova, J. and Herman, P. 2010. Long-term adaptation of Bacillus subtilis 168 to extreme pH affects chemical and physical properties of the cellular membrane. J. Membr. Biol. 233, 73-83.   DOI
25 Phan, T. N., Buckner, T., Sheng, J., Baldeck, J. D. and Marquis, R. E. 2004. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol. Immunol. 19, 31-38.   DOI
26 Porter, E. V. and Chassy, B. M. 1982. Glucokinase from Streptococcus mutans. Methods Enzymol. 90, 25-30.