• 제목/요약/키워드: $GST{\pi}$

검색결과 38건 처리시간 0.025초

Pseudomonas sp. strain DJ77에 존재하는 Glutathione S-Transferase 아미노 말단잔기의 Site-directed Mutagenesis

  • 우희종;박용춘;김성재;정용제;정안식;김영창
    • 한국미생물·생명공학회지
    • /
    • 제25권4호
    • /
    • pp.374-378
    • /
    • 1997
  • Glutathione S-transferase (GST) was purified from Pseudomonas sp. DJ77, and its N-terminal sequence was determined to be MKLFISPGACSL. A specific tyrosyl residue in the vicinity of the N terminus is conserved in all the known cytosolic GSTs and has been shown to function as a catalytic residue in $\alpha$, $\mu$, $\pi$ class GSTs from mammals. However, Pseudomonas sp. DJ77 GST has the Phe-4 and Ile-5 instead of Tyr in N-terminus. Its replacement with tyrosine did not significantly affect the enzyme activity. Results from in vitro biochemical analyses were confirmed by the in vivo activity-based CDNB growth inhibition analyses. Our results clearly indicate that GST of Pseudomonas sp. DJ77 has a novel reaction mechanism different from that of mammalian GSTs.

  • PDF

Comparative Effects of $PKB-{\alpha}$ and $PKC-{\zeta}$ on the Phosphorylation of GLUT4-Containing Vesicles in Rat Adipocytes

  • Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권6호
    • /
    • pp.487-496
    • /
    • 2000
  • Insulin stimulates glucose transport in muscle and fat cells by promoting the translocation of glucose transporter (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3-kinase) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt and $PKC-{\zeta}$, those are known as the downstream target of PI3-kinase in regulation of GLUT4 translocation, is not known yet. An interesting possibility is that these protein kinases phosphorylate GLUT4 directly in this process. In the present study, $PKB-{\alpha}$ and $PKC-{\zeta}$ were added exogenously to GLUT4-containing vesicles purified from low density microsome (LDM) of the rat adipocytes by immunoadsorption and immunoprecipitation for direct phosphorylation of GLUT4. Interestingly GLUT4 was phosphorylated by $PKC-{\zeta}$ and its phosphorylation was increased in insulin stimulated state but GLUT4 was not phosphorylated by $PKB-{\alpha}.$ However, the GST-fusion proteins, GLUT4 C-terminal cytoplasmic domain (GLUT4C) and the entire major GLUT4 cytoplasmic domain corresponding to N-terminus, central loop and C-terminus in tandem (GLUT4NLC) were phosphorylated by both $PKB-{\alpha}$ and $PKC-{\zeta}.$ The immunoblots of $PKC-{\zeta}$ and $PKB-{\alpha}$ antibodies with GLUT4-containing vesicles preparation showed that $PKC-{\zeta}$ was co-localized with the vesicles but not $PKB-{\alpha}.$ From the above results, it is clear that $PKC-{\zeta}$ interacts with GLUT4-containing vesicles and it phosphorylates GLUT4 protein directly but $PKB-{\alpha}$ does not interact with GLUT4, suggesting that insulin-elicited signals that pass through PI3-kinase subsequently diverge into two independent pathways, an Akt pathway and a $PKC-{\zeta}$ pathway, and that later pathway contributes, at least in part, insulin stimulation of GLUT4 translocation in adipocytes via a direct GLUT4 phosphorylation.

  • PDF

Distribution of Glutathione S-Transferase Omega Gene Polymorphism with Different Stages of HBV Infection Including Hepatocellular Carcinoma in the Egyptian Population

  • Shaban, Nadia Z;Salem, Halima H;Elsadany, Mohamed A;Ali, Bahy A;Hassona, Ehab M;Mogahed, Fayed AK
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2145-2150
    • /
    • 2016
  • Background: Infection with hepatitis B virus (HBV) is a major global public health problem, with a wide spectrum of clinical manifestations. Human cytosolic glutathione-S-transferases (GSTs) include several classes such as alpha (A), mu (M), pi (P), sigma (S), zeta (Z), omega (O) and theta (T). The present study aimed to investigate the role of GST omega genes (GSTO1 and GSTO2) in different groups of patients infected with HBV. Materials and Methods: HBV groups were classified according to clinical history, serological tests and histological analysis into normal carriers (N), acute (A), chronic (CH), cirrhosis (CI) and hepatocellular carcinoma (HCC) cases. The study focused on determination of the genotypes of GST omega genes (GSTO1 and GSTO2) and GST activity and liver function tests. Results: The results showed that GSTO1 (A/A) was decreased in N, A, CH, CI and HCC groups compared to the C-group, while, GSTO1 (C/A) and GSTO1(C/C) genotypes were increased significantly in N, A, CH, CI and HCC groups. GSTO2 (A/A) was decreased in all studied groups as compared to the C-group but GSTO2(A/G) and GSTO2(G/G) genotypes were increased significantly. In addition, GST activities, albumin and TP levels were decreased in all studied groups compared to the C-group, while the activities of transaminases were increased to differing degrees. Conclusions: The results indicate that GSTO genetic polymorphisms may be considered as biomarkers for determining and predicting the progression of HBV infection.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • 제56권2호
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Differential anticancer effect of fermented squid jeotgal due to varying concentrations of soymilk additive

  • Akther, Fahima;Cheng, Jinhua;Yang, Seung Hwan;Chung, Gyuhwa
    • Journal of Applied Biological Chemistry
    • /
    • 제60권2호
    • /
    • pp.133-136
    • /
    • 2017
  • Fermentation plays a vital role in the nutritional enrichment of food. Korea has a long tradition of adding fermented food to the daily diet and jeotgal is one of the common fermented and salted foods in Korean cuisine. In our study, we added soymilk as an additive to squid jeotgal to improve its functionality. We mixed different concentrations of soymilk (2, 5, and 10 mg/g) with squid jeotgal samples, fermented them for one week, and then tested their antioxidant and anticancer activities to compare with those of squid jeotgal samples without soymilk additive. To investigate the anticancer characteristics, glutathione-S-transferase (GST)-pi enzyme assay was used. To test the antioxidant activities, various assays were performed, including 2,2-diphenyl-1-picryl hydrazyl free radical scavenging activity, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium saltradical cation scavenging assay, and reducing power assay. Samples fermented with a small amount of soymilk showed excellent anticancer activity. The addition of only 2 mg/g of soymilk to squid jeotgal inhibited the activity of GST-pi by almost 50% when compared with the sample with no addition. Moreover, no undesirable bitterness or astringency was noticed. Our results could help to improve the current food status of squid jeotgal and it could be used to reduce the risk of chronic disease along with its basic nutritional function.

Effects of Dietary Peroxidizability Index Values on Hepatic TBARS and Antioxidant Enzyme Activity in 7,12-dimethylbenz[$\alpha$]anthracene-treated Rats

  • Kang Min Jeong;Shin Myoung Suk;Park Tung Nan;Lee Sang Sun
    • Nutritional Sciences
    • /
    • 제9권1호
    • /
    • pp.14-19
    • /
    • 2006
  • Breast cancer may be the consequence of free radical damage, which is partially caused by the excessive intake of dietary fat and imbalances in antioxidant scavenger system;. In this experiment, we examined! the effects of dietary peroxidizability index (PI) values on hepatic thiobmbituric acid reaction substances (TBARS) and antioxidant enzyme activities in rats treated with 7,12-dimethylbenz[$\alpha$]anthracene (DMBA). Female Sprague-Dawley rats were used and 7,12-DMBA (20 mg/kg body weight) was gastrically intubated at seven weeks of age in order to induce mammary tumors (MT). The levels of dietary PI were 36, 81, 126 and 217 (LPI, MLPI, MHPI and HPI), while dietary polyunsaturated/saturated fatty acids ratio was maintained at the same level (1.0). Fat used in the experiment was mixed with soybean oil, com oil, palm oil, perilla oil, sesame oil, fish oil, and beef tallow. Experimental diets were given for the following 20 weeks. We measured tumor numbers and weights, and then assayed the hepatic TBARS levels and antioxidant enzyme activities such as superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione-S-transferase (GST) and glutathione reductase (GR). The incidence of Mr was the lowest in the MHPI group. The hepatic TBARS level was significantly raised with increasing dietary PI value. The hepatic SOD and GR activities were differed significantly by dietary PI value. The hepatic SOD activity was negatively correlated with dietary PI value and GR activity was the highest in the rats fed the MHPI diet. When the dietary P/S ratio is kept at 1.0, adequate dietary PI value (PI value of 126) may reduce the incidence and growth of Mr, but this benefit may be lost with higher dietary PI value. These results suggest that the awareness of dietary PI values may help to decrease breast cancer incidence and growth.

원숭이 뇌 약물대사효소 유전자 발현에 미치는 3-methylcholanthrene 영향 (Effects of 3-methylcholanthrene on the Expression of Drug Metabolizing Enzyme Genes in Monkey Brain)

  • 이경원;아사오카;신윤용
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권1호
    • /
    • pp.40-45
    • /
    • 2004
  • In order to understand the mechanism of the regulation of drug metabolizing enzyme gene expression, we have studied the induction of CYP1A1 and GSTα, μ, π enzymes in Japanese monkey and rhesus monkey after the treatment with 3-methylcholanthrene (3MC) and di-n- butyl phthalate (DBP) and bisphenol A (BPA). The levels of mRNA were measured_by RT-PCR in brain, intestine and liver. In the case of adult monkey, treatment with 3MC induced CYP1A1 mRNA in brain by 2-fold. The treatment with DBP induced CYP1A1 mRNA. Effects of 3MC and DBP on GST mRNA expression was not clear. But GSTμ was slightly inhibited by the treatment with 3MC and DBP. GSTα was not induced by the treatment with 3MC and DBP in brain. GSTπ was slightly induced by the treatment with 3MC and DBP in brain. In the case of fetus monkey, the basal levels of fetus CYP1A1 mRNA and GSTs mRNA were relatively low compared to adult monkey. As the age of monkey increased, the basal levels of CYP1A1 mRNA were also increased. 3MC induced the expression of CYP1A1 mRNA in liver, whereas it didn't significantly induce CYP1A1 mRNA in brain. The levels of GSTμ and GSTα were not changed by the treatment with 3MC and DBP. GSTπ was slightly induced by the treatment with 3MC and DBP.

  • PDF

Effects of Vinorelbine on Cisplatin Resistance Reversal in Human Lung Cancer A549/DDP Cells

  • Zhou, Yu-Ting;Li, Kun;Tian, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4635-4639
    • /
    • 2013
  • Multi-drug resistance (MDR) is an essential aspect of human lung cancer chemotherapy failure. Recent studies have shown that vinorelbine is involved in underlying processes in human tumors, reversing the MDR inseveral types of cancer cells. However, the roles and potential mechanism are not fully clear. In this study, we explored effects of vinorelbine in multi-drug resistance reversal of human lung cancer A549/DDP cells. We found that vinorelbine increased drug sensitivity to cisplatin and intracellular accumulation of rhodamine-123, while decreasing expression of P-glycoprotein (P-gp), multi-drug resistance-associated protein (MRP1) and glutathione-S-transferase ${\pi}$ (GST-${\pi}$) in A549/DDP cells. At the same time, we also established downregulation of p-Akt and decreased transcriptional activation of NF-${\kappa}B$ and twist after vinorelbine treatment. The results indicated that vinorelbine might be used as a potential therapeutic strategy in human lung cancer.

Role of Integrin-Linked Kinase in Multi-drug Resistance of Human Gastric Carcinoma SGC7901/DDP Cells

  • Song, Wei;Jiang, Rui;Zhao, Chun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5619-5625
    • /
    • 2012
  • Gastric carcinoma is a leading cause of cancer death in the world and multi-drug resistance (MDR) is an essential aspect of gastric carcinoma chemotherapy failure. Recent studies have shown that integrin-linked kinase (ILK) is involved in metastasis of human tumors, expression silencing of ILK inhibiting the metastasis of several types of cultured human cancer cells. However, the role and potential mechanism of ILK to reverse the multi-drug resistance in human gastric carcinoma is not fully clear. In this report, we focused on roles of expression silencing of ILK in multi-drug resistance reversal of human gastric carcinoma SGC7901/DDP cells, including increased drug sensitivity to cisplatin, cell apoptosis rates, and intracellular accumulation of Rhodamine-123, and decreased mRNA and protein expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), excision repair cross-complementing gene 1 (ERCC1), glutathione S-transferase -${\pi}$ (GST-${\pi}$) and RhoE, and transcriptional activation of AP-1 and NF-${\kappa}B$ in ILK silenced SGC7901/DDP cells. We also found that there was a decreased level of p-Akt and p-ERK. The results indicated that ILK might be used as a potential therapeutic strategy to combat multi-drug resistance through blocking PI3K-Akt and MAPK-ERK pathways in human gastric carcinoma.

Oxidative Stress in the Heart of Rats Infected with Trypanosoma evansi

  • Baldissera, Matheus D.;Souza, Carine de F.;Bertoncheli, Claudia M.;da Silveira, Karine L.;Grando, Thirssa H.;Porto, Bianca C.Z.;Leal, Daniela B.R.;Da Silva, Aleksandro S.;Mendes, Ricardo E.;Stefani, Lenita M.;Monteiro, Silvia G.
    • Parasites, Hosts and Diseases
    • /
    • 제54권3호
    • /
    • pp.247-252
    • /
    • 2016
  • This study was conducted to investigate the occurrence of oxidative stress in the heart tissue of rats infected with Trypanosoma evansi. Rats were divided into 2 groups (A and B) with 12 animals each, and further subdivided into 4 subgroups (A1 and A2, 6 animals/each; and B1 and B2, 6 animals/each). Animals in the groups B1 and B2 were subcutaneously inoculated with T. evansi. Thiobarbituric acid reactive substances (TBARS), superoxide dismutase activity (SOD), glutathione S-transferase activity (GST), reduced glutathione activity (GSH), and non-protein thiols (NPSH) in the heart tissue were evaluated. At day 5 and 15 post-infection (PI), an increase in the TBARS levels and a decrease in the SOD activity (P<0.05) were observed. GSH and GST activities were decreased in infected animals at day 15 PI (P<0.05). Considering the proper functioning of the heart, it is possible that the changes in the activity of these enzymes involved in the oxidative stress may be related, at least in part, in the pathophysiology of rats infected with T. evansi.