In order to solve the well-known drawback of reduced flexibility that is associate with ASIC implementations, this paper proposes a novel arithmetic unit over GF(2$^{m}$ ) for field programmable gate arrays (FPGAs) implementations of elliptic curve cryptographic processor. The proposed arithmetic unit is based on the binary extended GCD algorithm and the MSB-first multiplication scheme, and designed as systolic architecture to remove global signals broadcasting. The proposed architecture can perform both division and multiplication in GF(2$^{m}$ ). In other word, when input data come in continuously, it produces division results at a rate of one per m clock cycles after an initial delay of 5m-2 in division mode and multiplication results at a rate of one per m clock cycles after an initial delay of 3m in multiplication mode respectively. Analysis shows that while previously proposed dividers have area complexity of Ο(m$^2$) or Ο(mㆍ(log$_2$$^{m}$ )), the Proposed architecture has area complexity of Ο(m), In addition, the proposed architecture has significantly less computational delay time compared with the divider which has area complexity of Ο(mㆍ(log$_2$$^{m}$ )). FPGA implementation results of the proposed arithmetic unit, in which Altera's EP2A70F1508C-7 was used as the target device, show that it ran at maximum 121MHz and utilized 52% of the chip area in GF(2$^{571}$ ). Therefore, when elliptic curve cryptographic processor is implemented on FPGAs, the proposed arithmetic unit is well suited for both division and multiplication circuit.
유한체상의 곱셈은 타원곡선 암호시스템의 구현에 있어 가장 중요한 연산 중 하나이다. 본 논문에서는 가우시안 정규기저를 이용하여, $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조를 제안한다. 제안된 곱셈 알고리즘은 정규기저 원소의 대칭성이용과 계수의 인덱스 변형에 기반하며, 타원곡선 암호 시스템을 위해 NIST(National Institute of Standards and Technology) 및 IEEE 1363에서 권고하는 다섯 가지 $GF(2^m)$, $m\in${163, 233, 283, 409, 571}, 모두에 적용 할 수 있다. 제안된 곱셈알고리즘에 기만한 VLSI 구조는 기존의 $GF(2^m)$상의 정규기저 곱셈기에 비해 속도 혹은 하드웨어 면적에 있어 향상된 성능을 보인다. 또한 본 논문에서는 정규기저 원소의 기본 곱셈 행렬을 쉽게 찾을 수 있는 방법을 제시한다.
본 논문에서는 GF($P^{m}$ )상에서의 새로운 승산 알고리듬과 승산기 구성법을 나타내었다. 유한체 상에서의 두 원소에 대한 승산공식을 유도하였고 유도된 수식에 의해 승산기를 구성하였다. 적용예로 GF(3) 승산 모듈과 덧셈 모듈을 전류 모드 CMOS 기법을 적용하여 구현하였다. 이러한 모듈을 기본 모듈로 사용하여 GF(3$^{m}$ )승산기를 설계하였고 SPICE를 통하여 검증하였다. 제시된 승산기는 규칙적인 셀 구조를 사용하였고 단순히 규칙적인 내부 결선으로 구성된다. 따라서, 유한체 상에서 차수가 m 차로 증가하는 승산에 대해서도 간단히 확장이 가능하다.
현대 통신 분야에서 많이 응용되고 있는 유한 필드상의 중요한 연산근 곱셈과 지수승 연산 등이 있다. 유한 필드에서 지수 연산은 이진 방법을 이용하여 곱셈과 제곱을 반복함으로서 구현될 수 있다. 그래서 이러한 연산들을 위한 빠른 알고리즘과 효율적인 하드웨어 구조 개발이 중요하다. 본 논문에서는 GF($2^m$)상의 MSB-우선 곱셈 연산을 위한 효율적인 비트-시리얼 시스톨릭 곱셈기를 구현하였다. 제안된 곱셈기는 지수 연산기의 핵심 회로로 사용될 수 있으며 기존의 곱셈기들과 비교하여 보다 적은 입력-단자의 수와 공간-시간 복잡도를 가진다. 그리고 제안된 구조는 정규성과 모듈성, 단 방향 자료 흐름을 가지기 때문에 VLSI 칩과 같은 하드웨어로 보다 쉽게 구현할 수 있다.
본 논문에서는 $GF(2^m)$ 상에서 표준기저를 사용한 두 다항식의 곱셈을 비트-병렬로 실현하는 새로운 형태의 비트-병렬 곱셈기를 제안하였다. 곱셈기의 구성에 앞서, 피승수 다항식과 기약다항식의 곱셈을 병렬로 수행 한 후 승수 다항식의 한 계수와 비트-병렬로 곱셈하여 결과를 생성하는 VCG를 구성하였다. VCG의 기본 셀은 2개의 AND 게이트와 2개의 XOR 게이트로 구성되며, 이들로부터 두 다항식의 비트-병렬 곱셈을 수행하여 곱셈 결과를 얻도록 하였다. 이러한 과정을 확장하여 m에 대한 일반화된 회로의 설계를 보였으며, 간단한 형태의 곱셈회로 구성의 예를 $GF(2^4)$를 통해 보였다. 또한 제시한 곱셈기는 PSpice 시뮬레이션을 통하여 동작특성을 보였다. 본 논문에서 제안한 곱셈기는 VCG의 기본 셀을 반복적으로 연결하여 구성하므로, 차수 m이 매우 큰 유한체상의 두 다항식의 곱셈에서 확장이 용이하며, VLSI에 적합하다.
본 논문에서는 GF($2^m$)상의 표준기저를 사용한 새로운 형태의 VCG에 의한 고속병렬 승산회로를 제안하였다. 승산기의 구성에 앞서, 피승수 다항식과 기약다항식의 승산을 병렬로 수행하는 벡터 코드 생성기(VCG) 기본 셀을 설계하였고, VCG 회로와 승수 다항식의 한 계수와 비트-병렬로 승산하여 결과를 생성하는 부분 승산결과 셀(PPC)를 설계하였다. 제안한 승산기는 VCG와 PPC를 연결하여 고속의 병렬 승산을 수행한다. VCG 기본 셀과 PPC는 각각 1개의 AND 게이트와 1개의 XOR 게이트로 구성된다. 이러한 과정을 확장하여 m에 대한 일반화된 회로의 설계를 보였으며, 간단한 형태의 승산회로 구성의 예를 GF($2^4$)를 통해 보였다. 또한 제시한 승산기는 PSpice 시뮬레이션을 통하여 동작특성을 보였다. 본 논문에서 제안한 승산기는 VCG와 PPC을 반복적으로 연결하여 구성하므로, 차수 m이 매우 큰 유한체상의 두 다항식의 곱셈에서 확장이 용이하며, VLSI에 적합하다.
Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.
본 논문은 스칼라 곱셈, Menezes-Vanstone 타원곡선 암호 및 복호 알고리즘, 점-덧셈, 점-2배 연산, 유한체상 곱셈, 나눗셈 등의 7가지 동작을 수행하는 GF($2^{191}$) 타원곡선 암호프로세서를 하드웨어로 설계하였다. 단순 전력 분석에 대비하기 위해 타원곡선 암호프로세서는 주된 반복 동작이 키 값에 무관하게 동일한 연산 동작으로 구성되는 몽고메리 스칼라 곱셈 기법을 사용하며, GF($2^m$)의 유한체에서 각각 1, (m/8), (m-1)개의 고정된 사이클에 완료되는 GF-ALU, GF-MUL, GF-DIV 연산장치가 병렬적으로 수행되는 동작 특성을 갖는다. 설계된 프로세서는 0.35um CMOS 공정에서 약 68,000개의 게이트로 구성되며, 시뮬레이션을 통한 최악 지연시간은 7.8 ns로 약 125 MHz의 동작속도를 갖는다. 설계된 프로세서는 320 kps의 암호율, 640 kbps을 복호율 갖고 7개의 유한체 연산을 지원하므로 다양한 암호와 통신 분야에 적용할 수 있다.
Efficient arithmetic design is essential to implement error correcting codes and cryptographic applications over finite fields. This article presents an efficient $AB^2$ multiplier in GF($2^m$) using a polynomial representation. The proposed multiplier produces the result in m clock cycles with a propagation delay of two AND gates and two XOR gates using O($2^m$) area-time complexity. The proposed multiplier is highly modular, and consists of regular blocks of AND and XOR logic gates. Especially, exponentiation, inversion, and division are more efficiently implemented by applying $AB^2$ multiplication repeatedly rather than AB multiplication. As compared to related works, the proposed multiplier has lower area-time complexity, computational delay, and execution time and is well suited to VLSI implementation.
유한 필드 GF(2$^{m}$ ) 상에서의 곱셈은 Diffie-Hellman key exchange, EIGamal과 같은 공개키 암호시스템에서의 기본적인 연산이다. 본 논문에서 는 셀룰러 오토마타를 이용하여 GF(2$^{m}$ ) 상에서 몽고메리 곱셈을 m 클럭 사이클만에 처리하는 새로운 구조를 제시 하였다. 본 논문에서 제시된 몽고메리 곱셈기는 모듈러 지수기, 나눗셈기, 곱셈의 역원기등을 효율적으로 구현하는데 활용될 수 있다. 또한 셀룰러 오토마타는 간단하고도 규칙적이며, 모듈화 하기 쉽고 계층화 하기 쉬운 구조이므로 VLSI구현에도 효율적으로 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.