• Title/Summary/Keyword: $Fe_2O_3$ nanoparticles

Search Result 195, Processing Time 0.026 seconds

Preparation of hybrid Fe3O4 nanoparticles for biomedical applications (생의학적 응용을 위한 Fe3O4 복합 나노입자의 제조)

  • Bae, Sung-Su;Nguyen, The Dung;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.77-81
    • /
    • 2016
  • Superparamagnetic $Fe_3O_4$ nanoparticles with particle size from 10 to 20 nm were synthesized by coprecipitation method. Subsequently, the $Fe_3O_4$ nanoparticles were used to fabricate $Fe_3O_4/SiO_2$ core-shell nanoparticles by sol-gel method. The $Fe_3O_4/SiO_2$ nanoparticles synthesized by sol-gel method exhibit the high uniformities of particle size and shape. We also investigated the heating characteristics of $Fe_3O_4$ and $Fe_3O_4/SiO_2$ nanoparticles for biomedical applications. The $Fe_3O_4$ nanoparticles show the faster temperature increase and the higher specific loss power(SLP) value than the $Fe_3O_4/SiO_2$ nanoparticles.

  • PDF

Evaluation of Magnetic and Thermal Properties of Ferrite Nanoparticles for Biomedical Applications

  • Tomitaka, Asahi;Jeun, Min-Hong;Bae, Seong-Tae;Takemura, Yasushi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.164-168
    • /
    • 2011
  • Magnetic nanoparticles can potentially be used in drug delivery systems and for hyperthermia therapy. The applicability of $Fe_3O_4$, $CoFe_2O_4$, $MgFe_2O_4$, and $NiFe_2O_4$ nanoparticles for the same was studied by evaluating their magnetization, thermal efficiency, and biocompatibility. $Fe_3O_4$ and $CoFe_2O_4$ nanoparticles exhibited large magnetization. $Fe_3O_4$ and $NiFe_2O_4$ nanoparticles exhibited large induction heating. $MgFe_2O_4$ nanoparticles exhibited low magnetization compared to the other nanoparticles. $NiFe_2O_4$ nanoparticles were found to be cytotoxic, whereas the other nanoparticles were not cytotoxic. This study indicates that $Fe_3O_4$ nanoparticles could be the most suitable ones for hyperthermia therapy.

Improved Ethanol Gas Sensing Performance of α-Fe2O3 Nanoparticles by the Addition of NiO Nanoparticles (NiO의 첨가에 따른 α-Fe2O3 나노입자 센서의 에탄올 가스 검출 특성 향상)

  • Park, Sunghoon;Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • In order to investigate the effect of NiO on the ethanol gas sensing performance of ${\alpha}-Fe_2O_3$ nanoparticles, NiO and ${\alpha}-Fe_2O_3$ nanoparticles are synthesized by hydrothermal method. The sensor with ${\alpha}-Fe_2O_3$ and NiO nanoparticles mixed at an optimum ratio of 7:3 showed 3.8 times improved sensing performance for 200ppm ethanol gas at $200^{\circ}C$. The enhanced gas sensing performance can be considered to be caused by pn heterojunction at the grain boundaries of ${\alpha}-Fe_2O_3$ and NiO nanopartcles.

The effect of Fe2O3 nanoparticles instead cement on the stability of fluid-conveying concrete pipes based on exact solution

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • This paper deals with the stability analysis of concrete pipes mixed with nanoparticles conveying fluid. Instead of cement, the $Fe_2O_3$ nanoparticles are used in construction of the concrete pipe. The Navier-Stokes equations are used for obtaining the radial force of the fluid. Mori-Tanaka model is used for calculating the effective material properties of the concrete $pipe-Fe_2O_3$ nanoparticles considering the agglomeration of the nanoparticles. The first order shear deformation theory (FSDT) is used for mathematical modeling of the structure. The motion equations are derived based on energy method and Hamilton's principal. An exact solution is used for stability analysis of the structure. The effects of fluid, volume percent and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field and geometrical parameters of pipe are shown on the stability behaviour of system. Results show that considering the agglomeration of $Fe_2O_3$ nanoparticles, the critical fluid velocity of the concrete pipe is decreased.

Lipofectamine-2000 Assisted Magnetofection to Fibroblast Cells Using Polyethyleneimine-Fe3O4@SiO2 Nanoparticles

  • Jang, Eue-Soon;Park, Kyeong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2567-2573
    • /
    • 2012
  • We successfully synthesized $Fe_3O_4@SiO_2$ nanoparticles with ultrathin silica layer of $1.0{\pm}0.5$ nm that polyethyleneimine (PEI) with low molecular weight of 2.0-4.0 kDa was covalently conjugated with the resulting $Fe_3O_4@SiO_2$ nanoparticles by silane coupling reaction. The PEI-$Fe_3O_4@SiO_2$ nanoparticles were further used as gene delivery vector for a human fibroblast cell (IMR-90) line. Gene transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes did not increase remarkably after magnetofection; however, the addition of Lipofectamine 2000 significantly increased the transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes. We believe that the present approach could be utilized for magnetofection as alternative to $Fe_3O_4$ nanoparticles conjugated with the PEI of high molecular weight thanks to its relatively low cytotoxicity and high transfection efficiency.

Preparation of Fe3O4/SiO2 Core/Shell Nanoparticles with Ultrathin Silica Layer

  • Jang, Eue-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.478-483
    • /
    • 2012
  • We successfully synthesized $Fe_3O_4/SiO_2$ nanoparticles with ultrathin silica layer of $1.0{\pm}0.5$ nm that was fine controlled by changing concentration of $Fe_3O_4$. Among various reaction conditions for silica coating, increasing concentration of $Fe_3O_4$ was more effective approach to decrease silica thickness compared to water-to-surfactant ratio control. Moreover, we found that concentration of the 1-octanol is also important factor to produce the homogeneous $Fe_3O_4/SiO_2$ nanoparticles. The present approach could be available to apply on preparation of other core/shell nanoparticles with ultrathin silica layer.

Study on Formation Mechanism of Iron Oxide Nanoparticles (산화철 나노입자의 형성 메커니즘에 대한 연구)

  • Kim, Dong-Young;Yoon, Seok-Soo;Takahashi, Migaku
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.167-172
    • /
    • 2012
  • In order to analyze the formation mechanism of iron oxide nanoparticles, we measured the heat flow of $Fe(OL)_3$ precursor with temperature, and TEM images and AC susceptibility of aliquots samples sequentially taken from the reaction solution, respectively. The thermal decomposition of two OL-chain from $Fe(OL)_3$ produced the Fe-OL monomer, which were contributed to the formation of iron oxide nanoparticles. In the initial stage of nanoparticles formation, the small iron oxide nanoparticles had ${\gamma}-Fe_2O_3$ structure. However, as the iron oxide nanoparticles were rapidly growth, the iron oxide nanoparticles showed ${\gamma}-Fe_2O_3$-FeO core-shell structure which the FeO layer was formed on the surface of ${\gamma}-Fe_2O_3$ nanoparticles by insufficient oxygen supply from the reaction solution. These nanoparticles were transformed to $Fe_3O_4$ structure by oxidation during long aging time at high temperature. Finally, the $Fe_3O_4$ nanoparticles with high saturation magnetization and stable in the air could be easily synthesized by the thermal decomposition method.

Synthesis of Magnetic Nanoparticles of Fe3O4 and CoFe2O4 and Their Surface Modification by Surfactant Adsorption

  • Zhao, Shi Yong;Lee, Don-Geun;Kim, Chang-Woo;Cha, Hyun-Gil;Kim, Young-Hwan;Kang, Young-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.237-242
    • /
    • 2006
  • $Fe_3O_4$ and $CoFe_2O_4$ magnetic nanoparticles have been synthesized successfully in aqueous solution and coated with oleic acid. The solid and organic solution of the synthesized nanoparticles was obtained. Self-assembled monolayer films were formed using organic solution of these nanoparticles. The crystal sizes determined by Debye-Scherre equation with XRD data were found close to the particle sizes calculated from TEM images, and this indicates that the synthesized particles are nanocrystalline. Especially, EDS, ED, FT-IR, TGA/DTA and DSC were used to characterize the nanoparticles and the oleic acid adsorption, and it was found that oleic acid molecule on the $Fe_3O_4$ nanoparticle is a bilayer adsorption, while that on $CoFe_2O_4$ nanoparticle is single layer adsorption. The superparamagnetic behavior of the nanoparticles was documented by the hysteresis loop measured at 300 K.

Control of Crystal Phase and Agglomeration of Iron Oxide Nanoparticles in Gas Phase Synthesis

  • Lee, Chang-Woo;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.424-425
    • /
    • 2006
  • The effects of reaction temperature and precursor concentration on the microstructure and magnetic properties of ${\gamma}-Fe_2O_3$ nanoparticles synthesized as final products of iron acetylacetonate in chemical vapor condensation (CVC) were investigated. Pure ${\gamma}-Fe_2O_3$ phase was obtained at temperature above $900^{\circ}C$ and crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles decreased with lowering precursor concentration. Also, the coercivity decreases with decreasing crystallite size of nanopowder. The lowest coercivity was 7.8 Oe, which was obtained from the ${\gamma}-Fe_2O_3$ nanopowder sample synthesized at precursor concentration of 0.3M. Then, the crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles was 8.8 nm.

  • PDF

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai;Anh Truc Trinh;Thi Thanh Tam Pham;Hoan Nguyen Xuan
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.90-98
    • /
    • 2023
  • In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.