• Title/Summary/Keyword: $Fe^{2+}

Search Result 11,669, Processing Time 0.045 seconds

Recovery of EDTA from Waste Fluid of Archeological Waterlogged Wood Conservation Treatment (수침목재유물(水浸木材遺物) 보존처리(保存處理) 폐수(廢水)로부터 EDTA회수(回收))

  • Yang, Seok-Jin;Song, Ju-Yeong;Kim, Jong-Hwa
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.58-63
    • /
    • 2011
  • pH control-precipitation method is used for recovery of EDTA from waste fluid of archeological waterlogged wood conservation treatment. EDTA has been used for eliminating of blacken effect in archeological waterlogged wood which was buried in the ground for long period of time. The black substance is generated by Fe$^{3+}$ in the soil reacted with tannin in the archeological waterlogged wood. In order to remove the black substance in archeological waterlogged wood, EDTA was used. The black substance is eliminated from wood as Fe-EDTA complex are formed, and EDTA is separated and precipitated from Fe-EDTA complexes at pH 2.68 or less. The result of analysis of the precipitated products and the commercial EDTA by FT-IR and FE-SEM showed that precipitated product by pH adjusted was not a type of Fe-EDTA complex, but pure EDTA. In this study, Fe$^{3+}$ from waste fluid of EDTA can be separated by HCl added. EDTA can be recycled by using the method of precipitation of EDTA in a strong acid.

The Magnetic Properties of Amorphus Phase in Mechanically Alloyed $Fe_{50}Zr_{50}$ Powders (기계적 합금화한 비정질 $Fe_{50}Zr_{50}$ 분말의 자기특성)

  • 이성의;나형용;김원태;유성초
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • Amorphous $Fe_{50}Zr_{50}$ alloy has been manufactured by mechanical alloying from pure elemental powders of Fe and Zr in conventional ball mill under an Ar atmosphere. Structure and magnetic properties of the amorphous phase were studied by transmission electron microscopy and SQUID magnetometry. Selected area diffraction patterns taken from the mechanically alloyed powders showed two halo rings, indicating coexistence of Fe rich and Zr rich amorphous phases in mechanically alloyed powder. Curie temperature of the Fe rich amorphous phase, measured by Arrot plot, was 195 K. Fe content in the ferromagnetic amorphous phase, estimated from the Curie temperature, was about 65 at%. Spin wave stiffness constant of $Fe_{50} Zr_{50}$ alloys processed for 100 and 200 hrs were 52.2 and 63.8 meV, respectively. The higher spin wave stiffness constant in 200 hrs milled powders may arise from the precipitation of $\alpha$-Fe by partial crystallization of amorphous phase.

  • PDF

Magnetization Reversal of Exchange-biased Bilayers and Trilayers Probed using Front and Back LT-MOKE

  • Kim, Ki-Yeon;Kim, Ji-Wan;Choi, Hyeok-Cheol;You, Chun-Yeol;Shin, Sung-Chul;Lee, Jeong-Soo
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Magneto-optical Kerr effect (MOKE) magnetometry was used to investigate magnetization reversal dynamics in 30-nm NiFe/15-nm FeMn, 15-nm FeMn/30-nm CoFe bilayers, and 30-nm NiFe/(2,10)-nm FeMn/30-nm CoFe trilayers. The in-plane magnetization components of each ferromagnetic layer, both parallel and perpendicular to the applied field, were separately determined by measuring the longitudinal and transverse MOKE hysteresis loops from both the front and back sides of the film for an oblique incident s-polarized beam. The magnetization of the FeMn/CoFe bilayer was reversed abruptly and symmetrically through nucleation and domain wall propagation, while that of the NiFe/FeMn bilayer was reversed asymmetrically with a dominant rotation. In the NiFe/FeMn/CoFe trilayers, the magnetic reversal of the two ferromagnetic layers proceeded via nucleation and domain wall propagation for 2-nm FeMn, but via asymmetric rotation for 10-nm FeMn. The exchange-biased ferromagnetic layers showed the magnetization reversal along the same path in the film plane for the decreasing and increasing field branches from transverse MOKE hysteresis loops, which can be qualitatively explained by the theoretical model of the exchange-biased ferromagnetic/antiferromagnetic systems.

Fabrication of Al2O3/Fe-Ni Nanocomposites by Pressureless Sintering and their Magnetic Properties (상압소결에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 자기적 특징)

  • Lee, Hong-Jae;Jeong, Young-Keun;NamKung, Seok;Oh, Sung-Tag;Lee, Jai-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.769-774
    • /
    • 2002
  • The powder mixture in which Fe-Ni alloy particles of 20 nm were homogeneously dispersed on $Al_2O_3$ particle surfaces was prepared by hydrogen reduction of $Al_2O_3$ and metal oxide powders. $Al_2O_3$/Fe-Ni nanocomposites fabricated by pressureless sintering were only composed of $Al_2O_3$ and ${gamma}$-Fe-Ni phases and achieved over 98% of the theoretical density at the sintering temperature above $1350^{\circ}C$. The highest strength and toughness of the composites were 574 MPa and 3.9 MP$a{\cdot}m1/2$, respectively. These values were about 20% higher than these of monolithic $Al_2O_3$ sintered at the same conditions. Nanocomposites showed ferromagnetic properties and coercive force was increased with decrease of the average particle size of dispersions.

Distribution of Organic Matter and $Al_o+1/2Fe_o$ Contents in Soils Using Principal Component and Multiple Regression Analysis in Jeju Island (주성분분석 및 다중회귀분석에 의한 제주도 토양유기물 및 $Al_o+1/2Fe_o$ 함량 분포)

  • Moon, Kyung-Hwan;Lim, Han-Cheol;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.748-754
    • /
    • 2010
  • The contents of soil organic matter (SOM) and $Al_o+1/2Fe_o$ in soils are important criteria for the classification of new Andisols in Soil Taxonomy system. There are many soil types in Jeju Island with various soil forming environments. This paper was conducted to estimate the contents of soil organic matter and the content of ammonium oxalate extracted Al and Fe ($Al_o+1/2Fe_o$) using various environmental variables and to make soil property maps using a statistical analyses. The soil samples were collected from 321 locations and analyzed to measure the contents of SOM and $Al_o+1/2Fe_o$. It was analyzed the relationships among them and various environmental variables such as temperature, precipitation, net primary product, radiation, evapotranspiration, altitude, soil forming energy, topographic wetness index, elevation, difference surrounded area, and distances from the shore and the peak. We can exclude multi-collinearity among environmental variables with principal component analysis and reduce all the variables to 3 principal components. The contents of SOM and $Al_o+1/2Fe_o$ were estimated by multiple regression models and maps of them were made using the models.

A Study on Magnetoresistance Uniformity of NiFE/CoFe/AlO/CoFe/Ta TMR Devices Prepared by ICP Sputtering (ICP 스퍼터를 이용한 NiFe/CoFe/AlO/CoFe/Ta TMR 소자 제작에 있어서의 자기저항 균일성 연구)

  • 이영민;송오성
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.189-195
    • /
    • 2001
  • We prepared TMR junctions of NiFe(170 )/CoFe(48 )/Al(13 )-O/CoFe(500 )/Ta(50 ) structure on 2.5$\times$2.5 $\textrm{cm}^2$ area Si/SiO$_2$ substrates in order to investigate the uniformity of magnetoresistance(MR) value using a ICP magnetron sputter. Each layer was deposited by the ICP magnetron sputter and tunnel barrier was formed by the plasma oxidation method. We measured MR ratio and resistance of TMR devices with four-terminal probe system by applying external magnetic field. Although we used ICP sputter which is known as superior to make uniform films, the standard variation of MR ratio was 2.72. The variation was not dependent on the TMR devices location of a substrate. We found that MR ratio and spin-flip field (H's) increased as the resistance increased, which may be caused by local interface irregularity of the insulating layer. The variation of resistance value was 64.19 and MR ratio was 2.72, respectively. Our results imply that to improve the insulating layer fabrication process including annealing process to lessen interface modulation in order to mass produce the TMR devices.

  • PDF

Preparation of Pb(Fe1/2Nb1/2)O3 Powders by Supercritical Fluid Method (초임계 유체법을 이용한 Pb(Fe1/2Nb1/2)O3분말 제조)

  • 임대영;김병규;최근목;홍석형;김태훈
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.566-569
    • /
    • 2002
  • In general, Pb-based complex perovskite powders have not been directly prepared because pyrochlore that is secondary phase appears. In this study, we tried to prepare Pb(Fe$_{1}$2/Nb$_{1}$2/)O$_3$ which was used to the electronic multicomponent by supercitical fluid method in order to fabricate very active powder not through pyrochlore.

Synthesis of MnFeP1-xAsx Nanocrystalline Powders by High-Energy Ball Milling (고에너지볼밀링을 이용한 MnFeP1-xAsx 나노분말의 합성)

  • 조영환
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.129-135
    • /
    • 2003
  • Nanocrystalline powders of $MnFeP_{1-x}As_x$(x=0.45-0.6) have been synthesized by mechanochemical reaction at room temperature using high-energy ball milling from mixtures of Mn, Fe, P, and As Powders. It has been found that a mechanically induced self-propagating reaction (MSR) occurs within 2 hours of milling and it produces very fine polycrystalline powder having a hexagonal $Fe_2P$ structure. Further milling up to 24 hours did not change the crystalline and average particle sizes or the phase composition of the milling product. When x is 0.65, no reaction among the reactants has been observed even after 24 hours of milling. As the P content decreases in $MnFeP_{1-x}As_x$, the incubation time for the MSR has increased and the lattice constants in both a and c axes have changed.

Effects of Thermal Treatments on Microstructural Features and Magnetic Properties of Rapidly Quenched Fe-6.5%Si Strip (열처리에 따른 급냉 Fe-6.5%Si 스트립의 미세구조 및 자기특성 변화)

  • Sung, Jin-Kyung;Kim, Mun-Chul
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.397-407
    • /
    • 1995
  • The objectives of this study are first, to expand our understanding of relationship between magnetic properties and microstructural features such as grain size and texture, and second to reduce core loss of Fe-6.5%Si strip through optimizing heat treatment conditions. A rapid solidification technique, planar flow casting(PFC), was adopted to produce Fe-6.5%Si strips. The strips were heat treated under various conditions. The results show that heat treatment conditions can change not only grain size but also (200) texture formation on the strip surface. Variation in magnetic properties of Fe-6.5%Si strip is analyzed in terms of the change in grain size as well as (200) texture on the strip surface. The heat treatment conditions of $1100^{\circ}C$ over 2 hr or $1150^{\circ}C$ $1{\sim}2hr$ in $N_2+5%H_2$ appear to minimize core loss of Fe-6.5%Si strips.

  • PDF

Study on the Thermal Expansion Property and Corrosion Resistance of Electro-deposited Fe-Ni-Cu Thin Sheet (전주된 Fe-Ni-Cu 박판의 열팽창 거동 및 내식성 평가)

  • Han, Sang-Seon;Song, Mun-Seop;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.121-121
    • /
    • 2015
  • Fe-44%Ni-2.7%Cu와 Fe-55Ni-0.8%Cu 합금의 $60{\sim}300^{\circ}C$에서의 열팽창계수는 Fe-55%Ni과 유사한 낮은 열팽창계수를 보였으나 Fe-38%Ni-1.5%Cu함금은 약 1,400%로 증가되었고 $600^{\circ}C$ 진공 열처리로써 약 230%로 증가되었다. $0.2N-H_2SO_4$ 용액에서의 부식전위와 부식속도는 각각 $-0.907V_{SHE}$$1{\times}10^{-5}A/cm^2$로써 내식성이 향상되는 경향을 보였다.

  • PDF