• 제목/요약/키워드: $D^*$-metric space

검색결과 88건 처리시간 0.021초

NOTES ON THE EVENTUAL SHADOWING PROPERTY OF A CONTINUOUS MAP

  • Lee, Manseob
    • 충청수학회지
    • /
    • 제30권4호
    • /
    • pp.381-385
    • /
    • 2017
  • Let (X, d) be a compact metric space with metric d and let f : $X{\rightarrow}X$ be a continuous map. In this paper, we consider that for a subset ${\Lambda}$, a map f has the eventual shadowing property if and only if f has the eventual shadowing property on ${\Lambda}$. Moreover, a map f has the eventual shadowing property if and only if f has the eventual shadowing property in ${\Lambda}$.

Common Fixed Point Theorems of Commuting Mappinggs

  • Park, Wee-Tae
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제26권1호
    • /
    • pp.41-45
    • /
    • 1987
  • In this paper, we give several fixed point theorems in a complete metric space for two multi-valued mappings commuting with two single-valued mappings. In fact, our main theorems show the existence of solutions of functional equations f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ and $\chi$=f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ under certain conditions. We also answer an open question proposed by Rhoades-Singh-Kulsherestha. Throughout this paper, let (X, d) be a complete metric space. We shall follow the following notations : CL(X) = {A; A is a nonempty closed subset of X}, CB(X)={A; A is a nonempty closed and founded subset of X}, C(X)={A; A is a nonempty compact subset of X}, For each A, B$\in$CL(X) and $\varepsilon$>0, N($\varepsilon$, A) = {$\chi$$\in$X; d($\chi$, ${\alpha}$) < $\varepsilon$ for some ${\alpha}$$\in$A}, E$\sub$A, B/={$\varepsilon$ > 0; A⊂N($\varepsilon$ B) and B⊂N($\varepsilon$, A)}, and (equation omitted). Then H is called the generalized Hausdorff distance function fot CL(X) induced by a metric d and H defined CB(X) is said to be the Hausdorff metric induced by d. D($\chi$, A) will denote the ordinary distance between $\chi$$\in$X and a nonempty subset A of X. Let R$\^$+/ and II$\^$+/ denote the sets of nonnegative real numbers and positive integers, respectively, and G the family of functions ${\Phi}$ from (R$\^$+/)$\^$s/ into R$\^$+/ satisfying the following conditions: (1) ${\Phi}$ is nondecreasing and upper semicontinuous in each coordinate variable, and (2) for each t>0, $\psi$(t)=max{$\psi$(t, 0, 0, t, t), ${\Phi}$(t, t, t, 2t, 0), ${\Phi}$(0, t, 0, 0, t)} $\psi$: R$\^$+/ \longrightarrow R$\^$+/ is a nondecreasing upper semicontinuous function from the right. Before sating and proving our main theorems, we give the following lemmas:

  • PDF

비측량용 카메라를 이용한 3차원 형상 해석 (The Analysis of 3-Dimensional Shape Using Non-Metric Cameras)

  • 정수
    • 대한공간정보학회지
    • /
    • 제17권2호
    • /
    • pp.91-99
    • /
    • 2009
  • 지형공간정보 분야에서 대상물의 3차원 형상에 대한 자료는 기본 자료로 취급되고 있다. 특히, 공간에 관련하여 계획, 유지, 관리 등을 업무를 수행하기 위해서는 다양한 물리적 형상 정보가 필요하다. 종래의 사진측량은 고가의 측량용 카메라와 숙달된 전문가가 운용하는 해석도화기를 이용하여 수행되어 왔으나 최근에는 수치사진측량의 발달로 인하여 저가의 비측량용 디지털 카메라를 이용해 컴퓨터 환경에서 수행하는 것이 가능해졌다. 본 연구에서는 비측량용 디지털 카메라를 이용한 근거리 사진측량에 의해 신속하게 3차원 형상정보를 생성하기 위한 기술을 연구하고, 이를 지형공간정보 분야에 적용할 수 있도록 함으로써, 지형공간정보 분야에서 필요로 하는 3차원 형상에 대한 정보의 취득을 원활하게 하는 것을 목적하였다. 비측량용 카메라 중에서 보급형 컴팩트 디지털 카메라를 사용하고 대상물 내의 단 하나의 길이 성분만을 관측하여 대상물의 3차원 형상을 해석한 결과 1화소 이하의 정확도로 대상물의 크기를 해석할 수 있었다.

  • PDF

COMMON FIXED POINT THEOREMS IN INTUITIONISTIC FUZZY METRIC SPACES

  • Turkoglu D.;Alaca C.;Cho Y.J.;Yildiz C.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.411-424
    • /
    • 2006
  • The purpose of this paper, using the idea of intuitionistic fuzzy set due to Atanassov [2], we define the notion of intuitionistic fuzzy metric spaces (see, [1]) due to Kramosil and Michalek [17] and Jungck's common fixed point theorem ([11]) is generalized to intuitionistic fuzzy metric spaces. Further, we first formulate the definition of weakly commuting and R-weakly commuting mappings in intuitionistic fuzzy metric spaces and prove the intuitionistic fuzzy version of Pant's theorem ([21]).

NONLINEAR CONTRACTIONS IN PARTIALLY ORDERED QUASI b-METRIC SPACES

  • Shah, Masood Hussain;Hussain, Nawab
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.117-128
    • /
    • 2012
  • Using the concept of a g-monotone mapping we prove some common fixed point theorems for g-non-decreasing mappings which satisfy some generalized nonlinear contractions in partially ordered complete quasi b-metric spaces. The new theorems are generalizations of very recent fixed point theorems due to L. Ciric, N. Cakic, M. Rojovic, and J. S. Ume, [Monotone generalized nonlinear contractions in partailly ordered metric spaces, Fixed Point Theory Appl. (2008), article, ID-131294] and R. P. Agarwal, M. A. El-Gebeily, and D. O'Regan [Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), 1-8].

On Special finsler Spaces With Common Geodesics

  • Kim, Byung-Doo;Park, Ha-Yong
    • 대한수학회논문집
    • /
    • 제15권2호
    • /
    • pp.331-338
    • /
    • 2000
  • In the present paper, we investigate a problem in a sym-metric Finsler space, which is a special space. First we prove that if a symmetric space remains to be a symmetric one under the Z-projective change, then the space is of zero curvature. Further we will study W-recurrent space and D-recurrent space under the pro-jective change.

  • PDF

SOME RELATIONS BETWEEN FUNCTION SPACES ON R$^n$

  • Shin, Seung-Hyun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제2권1호
    • /
    • pp.31-34
    • /
    • 1995
  • Let R$^n$be n-th Euclidean space. Let be the n-th spere embeded as a subspace in R$\^$n+1/ centered at the origin. In this paper, we are going to consider the function space F = {f│f : S$^n$\longrightarrow S$^n$} metrized by as follow D(f,g)=d(f($\chi$), g($\chi$)) where f, g $\in$ F and d is the metric in S$^n$. Finally we want to find certain relation these spaces.(omitted)

  • PDF

ERGODIC SHADOWING, $\underline{d}$-SHADOWING AND EVENTUAL SHADOWING IN TOPOLOGICAL SPACES

  • Sonika, Akoijam;Khundrakpam Binod, Mangang
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권4호
    • /
    • pp.839-853
    • /
    • 2022
  • We define the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property in terms of the topology of the phase space. Secondly we define these notions in terms of the compatible uniformity of the phase space. When the phase space is a compact Hausdorff space, we establish the equivalence of the corresponding definitions of the topological approach and the uniformity approach. In case the phase space is a compact metric space, the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property defined in terms of topology and uniformity are equivalent to their respective standard definitions.

ON $\varepsilon$-BIRKHOFF ORTHOGONALITY AND $\varepsilon$-NEAR BEST APPROXIMATION

  • Sharma, Meenu;Narang, T.D.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제8권2호
    • /
    • pp.153-162
    • /
    • 2001
  • In this Paper, the notion of $\varepsilon$-Birkhoff orthogonality introduced by Dragomir [An. Univ. Timisoara Ser. Stiint. Mat. 29(1991), no. 1, 51-58] in normed linear spaces has been extended to metric linear spaces and a decomposition theorem has been proved. Some results of Kainen, Kurkova and Vogt [J. Approx. Theory 105 (2000), no. 2, 252-262] proved on e-near best approximation in normed linear spaces have also been extended to metric linear spaces. It is shown that if (X, d) is a convex metric linear space which is pseudo strictly convex and M a boundedly compact closed subset of X such that for each $\varepsilon$>0 there exists a continuous $\varepsilon$-near best approximation $\phi$ : X → M of X by M then M is a chebyshev set .

  • PDF