• Title/Summary/Keyword: $Cu_xCo_{3-x}O_4$

Search Result 94, Processing Time 0.036 seconds

The Study of Magnetic Properties of Ni-Zn-Cu Ferrite by variation of Low Temperature Sintered (저온소결 온도변화에 따른 Ni-Zn-Cu 페라이트의 자기적 특성 연구)

  • Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.232-237
    • /
    • 2007
  • We have synthesized the low temperature sintered of Ni-Zn-Cu ferrite with nonstoichiometric composition a little deficient in $Fe_2O_3$ from $(Ni_{0.2}Cu_{0.2}Zn_{0.6})_{1+x}(Fe_2O_3)_{1-x}$. For low loss and acceleration of grain growth $TiO_2$ and $Li_2CO_3$ was added from 0.25 mol% to 1.0 mol%. The mixture of the law materials was calcinated and milled. The compacts of toroidal type were sintered at different temperature $(875^{\circ}C,\;900^{\circ}C,\;925^{\circ}C\;950^{\circ}C)$ for 2 hours in air followed by an air cooling. Then, effects of composition and sintering temperatures on the physical properties such as density, resistivity, magnetic induction, coercive force, initial permeability, and quality factor of the Ni-Zn-Cu ferrite were investigated. The density of the Ni-Zn-Cu ferrite was $4.85\sim5.32g/cm^3$, resistivity revealed $10^8\sim10^{12}\Omega-cm$. The magnetic properties obtained from the aforementioned Ni-Zn-Cu ferrite specimens were 1,300 gauss for the maximum induction, 4.5 oersted for the coercive force, 275 for the initial permeability, and 83 for the quality factor. The physical properties indicated that the specimens could be utilized as the core of high frequency range (involved microwave range) communication and deflection yoke of T.V.

Microstructure and Piezoelectric Properties of Low Temperature Sintering (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics (저온소결 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 미세구조 및 압전특성)

  • Lee, Kab-Soo;Yoo, Ju-Hyun;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.205-209
    • /
    • 2016
  • In this paper, piezoelectric ceramics with the composition of $(Na_{0.525}K_{0.4425}Li_{0.0375})(Nb_{0.8975}Sb_{0.065}Ta_{0.0375})O_3+0.3wt%\;CoO+x\;CuO$ ($0.005{\leq}x{\leq}0.025$) (abbreviated to NKL-NST) were fabricated for ultrasonic sensor application. The effects of CuO addition and sintering on the microstructure and the piezoelectric properties of the NKL-NST ceramics were systematically studied. Excellent piezoelectric properties such as electromchanical coupling $factor(k_p)=0.415$, piezoelectric constant $(d_{33})=166pC/N$ and piezoelectric figure of merit $d_{{33}*}g_{33}=5.47pm^2/N$ were obtained from the 2.5 mol% CuO doped NKL-NST+0.3 wt%CoO ceramics sintered at $1,000^{\circ}C$ for 3 h.

Mineralogy of Cu-Co Ores from Democratic Republic of Congo (콩고민주공화국 동-코발트 광석의 광물학적 특정)

  • Cho, Hyen-Goo;Seo, Hye-Min;Kim, Soon-Oh;Kim, Young-Ho;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.305-313
    • /
    • 2010
  • Mineralogical characteristics of Cu-Co ores from the Central African Copperbelt in the Democratic Repblic of Congo are studied using powder X-ray diffractometer, general area detector X-ray diffractometer, and electron proble microanalyzer. Black ores are mainly composed of heterogenite (cobalt oxide/hydroxide mineral) and malachite (copper carbonate mineral), whereas green ores are only composed of malachite. Heterogenite shows very bright white color under the reflected microscope, and belongs to 3R polytype, because it has d-spacings at $4.39{\AA}$ and $2.316{\AA}$. Since NiO and $Fe_20_3$ content of heterogenite are lower than those of 3R polytype from other localities, it cannot completely exclude the presence of 2H polytype in heterogenite from this study. Malachite is light grey color under the reflected microscope with approximate chemical formula of $Cu_{1.97}Co_{0.02}Fe^{2+}{_{0.01}}CO_3(OH)_2$. Heterogenite and malachite were probably formed at the supergene emichment stage, the last mineralization stage in the Central African Copperbelt. Cobalt seems to be much more emiched in the black supergene (oxy)hydroxide ore than those in the primary sulfide ore.

Synthesis and Characterization of Some Transition Metal Complexes of Unsymmetrical Tetradentate Schiff Base Ligand (비대칭 Tetradentate Schiff 염기 리간드의 전이금속 착물에 대한 합성 및 특성)

  • Munde, A. S.;Jagdale, A. N.;Jadhav, S. M.;Chondhekar, T. K.
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.4
    • /
    • pp.407-414
    • /
    • 2009
  • The solid complexes of Cu(II), Ni(II), Co(II), Mn(II) and Fe(III) with 4-hydroxy-3-(1-{2-(2-hydroxybenzylidene)- amino phenylimino}-ethyl)-6-methy-pyran-2-one (H2L) derived from o-phenylenediamine, 3-acetyl- 6-methyl-(2H) pyran, 2,4 (3H)-dione (dehydroacetic acid or DHA) and salicylic aldehyde have been synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-visible, IR, $^1H$-NMR spectra, X-ray diffraction, thermal analysis, and screened for antimicrobial activity. The IR spectral data suggest that the ligand behaves as a dibasic tetradentate ligand with ONNO donor atoms sequence towards central metal ion. From the microanalytical data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand). The physico-chemical data suggests square planar geometry for Cu(II) and Ni(II) complexes and octahedral geometry for Co(II), Mn(II) and Fe(III) complexes. The x-ray differaction data suggests orthorhombic crystal system for Cu(II) complex, monoclinic crystal system for Ni(II), Co(II) and Fe(III) and tetragonal crystal system for Mn(II) complex. Thermal behaviour (TG/DTA) of the complexes was studied and kinetic parameters were determined by Coats-Redfern method. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus Niger and Trichoderma.

Distribution Behavior of Ni between CaO-SiO2-Al2O3-MgO Slag and Cu-Ni Alloy (CaO-SiO2-Al2O3-MgO 슬래그와 Cu-Ni합금 사이의 Ni 분배거동)

  • Han, Bo-Ram;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • To obtain the fundamental information on the dissolution of nickel into the slag in the pyrometallurgical processes for treatment of wasted PCB, the distribution ratios of nickel between CaO-$SiO_2-Al_2O_3$-MgO slag and copper-5 wt%Ni alloy were measured at 1623 K to 1823 K under a controlled $CO_2$-CO atmosphere. The distribution ratio of Ni increased linearly with increasing oxygen partial pressure. Therefore, the dissolution reaction of nickel into the slags could be described by the following equation; $$Ni(l)_{metal}+\frac{1}{2}O_2(g)NiO(l)_{slag}$$ The distribution ratio of Ni increased linearly with increasing content of basic oxides(CaO and MgO) in slag. However, the distribution ratio of Ni decreased linearly with increasing temperature. From these results, the empirical equation of distribution ratio of Ni was obtained by the following equation from the analysis of experimental conditions by multiple regression. $${\log}L_{Ni}=0.4000{\log}P_{O2}-5.1{\times}10^{-4}T+0.3375\(\frac{X_{CaO}+X_{MgO}}{X_{SiO2}}\)$$

The Piezoelectric Properties of (Na0.5K0.5)NbO3-K4CuNb8O23 Ceramics with Various K4CuNb8O23 Doping and Sintering Temperatures

  • Yoon, Jung-Rag;Lee, Chang-Bae;Lee, Kyung-Min;Lee, Heun-Young;Lee, Serk-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.126-129
    • /
    • 2010
  • (1-X) $(Na_{0.5}K_{0.5})NbO_3-X$ $K_4CuNb_8O_{23}$ (NKN-X KCN) ceramics were produced using the conventional solid state sintering method, and their sinterability and electric properties were investigated. The density, dielectric constant (${\varepsilon}_r$), piezoelectric constant $d_{33}$, electromechanical coupling factor $k_p$ and mechanical quality factor $Q_m$ value of the NKN ceramics depended upon the KCN content and the sintering temperature. In particular, the KCN addition to the NKN greatly improved the mechanical quality factor $Q_m$ value. The ceramic with X = 2.0 mol% sintered at $1,150^{\circ}C$ possesses the optimum properties (${\varepsilon}_r=241$, $d_{33}=78$, $k_p=0.34$ and $Q_m=1,121$). These results indicate that the ceramic is a promising candidate material for applications in lead free piezoelectric transformer and filter materials.

The structures and catalytic activities of metallic nanoparticles on mixed oxide

  • Park, Jun-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.339-339
    • /
    • 2010
  • The metallic nanoparticles (Pt, Au, Ag. Cu, etc.) supported on ceria-titania mixed oxide exhibit a high catalytic activity for the water gas shift reaction ($H_2O\;+\;CO\;{\leftrightarrow}\;H_2\;+\;CO_2$) and the CO oxidation ($O_2\;+\;2CO\;{\leftrightarrow}\;2CO_2$). It has been speculated that the high catalytic activity is related to the easy exchange of the oxidation states of ceria ($Ce^{3+}$ and $Ce^{4+}$) on titania, but very little is known about the ceria titanium interaction, the growth mode of metal on ceria titania complex, and the reaction mechanism. In this work, the growth of $CeO_x$ and Au/$CeO_x$ on rutile $TiO_2$(110) have been investigated by Scanning Tunneling Microscopy (STM), Photoelectron Spectroscopy (PES), and DFT calculation. In the $CeO_x/TiO_2$(110) systems, the titania substrate imposes on the ceria nanoparticles non-typical coordination modes, favoring a $Ce^{3+}$ oxidation state and enhancing their chemical activity. The deposition of metal on a $CeO_x/TiO_2$(110) substrate generates much smaller nanoparticles with an extremely high activity. We proposed a mechanism that there is a strong coupling of the chemical properties of the admetal and the mixed-metal oxide: The adsorption and dissociation of water probably take place on the oxide, CO adsorbs on the admetal nanoparticles, and all subsequent reaction steps occur at the oxide-admetal interface.

  • PDF

Facile Synthesis of Hollow CuO/MWCNT Composites by Infiltration-Reduction-Oxidation Method as High Performance Lithium-ion Battery Anodes

  • Zheng, Gang;Li, Zhiang;Lu, Jinhua;Zhang, Jinhua;Chen, Long;Yang, Maoping
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Hollow copper oxide/multi-walled carbon nanotubes (CuO/MWCNT) composites were fabricated via an optimized infiltration-reduction-oxidation method, which is more facile and easy to control. The crystalline structure and morphology were characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The as-prepared CuO/MWCNT composites deliver an initial capacity of 612.3 mAh·g-1 and with 80% capacity retention (488.2 mAh·g-1) after 100 cycles at a current rate of 0.2 A·g-1. The enhanced electrochemical performance is ascribed to the better electrical conductivity of MWCNT, the hollow structure of CuO particles, and the flexible structure of the CuO/MWCNT composites.

Electrochemical performance of double perovskite structured cathodes for intermediate temperature SOFCs

  • Jo, Seung-Hwan;Muralidharan, P.;Kim, Do-Kyung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.56.1-56.1
    • /
    • 2009
  • The intermediate operating temperature of solid oxide fuel cells (IT-SOFCs) have achieved considerable importance in the area of power fabrication. This is because to improve materials compatibility, their long-term stability and cost saving potential. However, to conserve rational cell performance at reduced-temperature regime, cathode performance should be obtained without negotiating the internal resistance and the electrode kinetics of the cell. Recently, double perovskite structure cathodes have been studied with great attention as a potential material for IT-SOFCs. In this study, double-perovskite structured cathodes of $GdBaCoCuO_{5+\delta}$, $GdBaCo_{2/3}Cu_{2/3}Fe_{2/3}O_{5+\delta}$ compositions and $(1-x)GdBaCo_2O_{5+\delta}+xCe_{0.9}Gd_{0.1}O_{1.95}$ (x = 10, 20, 30 and 40 wt.%) composites were evaluated as the cathode for intermediate temperature solid oxide fuel cells(IT-SOFCs). Electrical conductivity of the cathodes were measured by DC 4-probe method, and the thermal expansion coefficient of each sample was measured up to $900^{\circ}C$ by a dilatometer study. Area specific resistances(ASR) of the $GdBaCo_{2/3}Cu_{2/3}Fe_{2/3}O_{5+\delta}$ cathode and 70 wt.% $GdBaCo_2O5+\delta$ + 30wt.% Ce0.9Gd0.1O1.95 composite cathode on CGO electrolyte substrate were analyzed using AC 3-probe impedance study. The obtained results demonstrate that double perovskite-based compositions are promising cathode materials for IT-SOFCs.

  • PDF

Hydrogen Reduction Behavior and Microstructure Characteristics of Ball-milled CuO-Co3O4 Powder Mixtures (볼 밀링한 CuO-Co3O4 혼합분말의 수소환원 거동과 미세조직 특성)

  • Han, Ju-Yeon;Lee, Gyuhwi;Kang, Hyunji;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.410-414
    • /
    • 2019
  • The hydrogen reduction behavior of the $CuO-SCo_3O_4$ powder mixture for the synthesis of the homogeneous Cu-15at%Co composite powder has been investigated. The composite powder is prepared by ball milling the oxide powders, followed by a hydrogen reduction process. The reduction behavior of the ball-milled powder mixture is analyzed by X-ray diffraction (XRD) and temperature-programmed reduction at different heating rates in an Ar-10%H2 atmosphere. The scanning electron microscopy and XRD results reveal that the hydrogen-reduced powder mixture is composed of fine agglomerates of nanosized Cu and Co particles. The hydrogen reduction kinetics is studied by determining the degree of peak shift as a function of the heating rate. The activation energies for the reduction of the oxide powders estimated from the slopes of the Kissinger plots are 58.1 kJ/mol and 65.8 kJ/mol, depending on the reduction reaction: CuO to Cu and $SCo_3O_4$ to Co, respectively. The measured temperature and activation energy for the reduction of $SCo_3O_4$ are explained on the basis of the effect of pre-reduced Cu particles.