• Title/Summary/Keyword: $Cr_{2}O_{3}$/$Fe_{3}O_{4}$

Search Result 243, Processing Time 0.027 seconds

Corrosion of Fe-17%Cr Steels in (Na2SO4+NaCl) Salts at 800 and 900℃

  • Lee, Dong Bok;Xiao, Xiao
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.214-217
    • /
    • 2018
  • Stainless steel grade 430 with a composition of Fe-17%Cr was corroded in $Na_2SO_4$ and ($Na_2SO_4+NaCl$) salts at 800 and at $900^{\circ}C$ for up to 20 h. It corroded mainly to $Cr_2O_3$, along with a small amount of $Fe_2O_3$ and $Fe_3O_4$. The formed oxide scales were neither dense nor compact enough owing to their ensuing dissolution into the salt during corrosion, which facilitated internal corrosion. Corrosion occurred faster at $900^{\circ}C$ than $800^{\circ}C$. NaCl in $Na_2SO_4$ aggravated the scale adherence.

Study on Mold-Metal Reaction in Castings of Mn-Steel and Cr-Steel (Mn 및 Cr 주강의 주형반응에 관한 연구)

  • Lee, J.H.;Jeong, J.Y.;Lee, J.N.
    • Journal of Korea Foundry Society
    • /
    • v.5 no.4
    • /
    • pp.271-282
    • /
    • 1985
  • In order to investigate the mold reaction characteristics of Mn steel and Cr steel castings individually, the mold reaction products were examined by scanning electron microscopy, electron prove microanalyzer and X-ray diffractometer. From this experiment, the results were summarized as follows: 1) The mold reaction depth increased with increase of Mn content, while it decreased with increase of Cr content. 2) Mold reaction depth decreased with Mn content at $1200^{\circ}C$. 3) Mn, among the reaction products, forms a low fusion silicate, Mn $O.SiO_2$ while Cr forms a stable oxide, $CrO_3$ which hindering the reaction between FeO and $SiO_2$ thus the formation of $FeO.SiO_2$ was depressed.

  • PDF

High-temperature Oxidation Kinetics and Scales Formed on Fe-2.3%Cr-1.6%W Alloy (Fe-2.3%Cr-1.6%W합금의 고온산화 속도와 스케일 분석)

  • Park, Sang-Hwan;Zhao, Chenguang;Lee, Jae-Ho;Bong, Seong-Jun;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.96-97
    • /
    • 2011
  • The T23 steel, whose composition was Fe-2.3%Cr-1.6%W, was arc-melted, and oxidized between $600^{\circ}C$ and $900^{\circ}C$ in air for up to 7 months. The amount of precipitates in the arc-melted microstructure was as large as 11.4 vol.%. The precipitates increased the oxidation rate of the arc-melted T23 steel. Owing to the low amount of Cr in the T23 steel, breakaway oxidation occurred after a few hours during oxidation above $700^{\circ}C$ in both arc-melted and as-received T23 steels. The scales that formed on arc-melted and as-received T23 steels were similar to each other. They consisted primarily of the outer $Fe_2O_3$ layer and the inner ($Fe_2O_3$, $FeCr_2O_4$)-mixed layer. The precipitates increased the microhardness and the oxidation rates.

  • PDF

Thermodynamic Properties of $NiFe_2O_4-NiFe_2O_4$ Spinel Solid Solution

  • 박봉훈;김동수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.939-942
    • /
    • 1999
  • The tie lines delineating ion-exchange equilibria between NiFe2O4-NiCr2O4 spinel solid solution and Fe2O3-Cr2O3 corundum solid solution were determined at 900, 1000, and 1200 ℃ by electron microprobe and energy dispersive X-ray analysis of oxide phases, using the flux growth technique. Activities of the spinel components were calculated from the tie lines, assuming Temkin's ideal mixing in the corundum solid solution. The spinel phase could be expressed by a regular solution with negative deviations from ideality. The Gibbs free energies of mixing for spinel solid solution were discussed in terms of the cation distribution model, based on site preference energies and assuming random mixing on both tetrahedral and octahedral sites.

Geochemical Characteristics on Geological Groups of Stream Sediment in the Boseong-Hwasun Area, Korea (보성-화순지역 하상퇴적물에 대한 지질집단별 지구화학적 특성)

  • Park, Young-Seog;Kim, Jong-Kyun
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.707-718
    • /
    • 2011
  • We study the natural background and geochemical characteristics on geological groups of stream sediment in the Boseong-Hwasun area. We collected 186ea stream sediment samples along the primary channels and dried them naturally in laboratory. The contents of major, trace and rare earth elements were determined by XRF, ICP-AES and NAA analysis methods. In order to know the natural background and geochemical characteristics of geological groups, we classified the studied area into granitic gneiss (GGn) area and porphyroblastic gneiss (PGn) area. The contents range of major elements for GGn area is $SiO_2$ 45.5-73.09 wt.%, $Al_2O_3$ 12-20.76 wt.%, $Fe_2O_3$(T) 3.72-8.85 wt.%, $K_2O$ 2.38-4.2 wt.%, MgO 0.75-2.77 wt.%, $Na_2O$ 0.78-1.88 wt.%, CaO 0.27-2.1 wt.%, $TiO_2$ 0.56-1.72 wt.%, $P_2O_5$ 0.06-0.73 wt.% and MnO 0.03-0.95 wt.%, and for PGn area it is $SiO_2$ 43.74-70.71 wt.%, $Al_2O_3$ 11.54-25.05 wt.%, $Fe_2O_3$(T) 3.44-13.46 wt.%, $K_2O$ 2.08-3.86 wt.%, MgO 0.65-2.99 wt.%, $Na_2O$ 0.63-1.7 wt.%, CaO 0.35-2.07 wt.%, $TiO_2$ 0.68-4.17 wt.%, $P_2O_5$ 0.1-0.31 wt.% and MnO 0.07-0.33 wt.%. The contents range of hazard elements for GGn area is Cr 41.7-242 ppm, Co 7.6-25.1 ppm, Ni 12-61 ppm, Cu 10-47 ppm, Zn 48.5-412 ppm, Pb 17-215 ppm, and for PGn area, it is Cr 29.6-454 ppm, Co 5.9-53.7 ppm, Ni 8.7-287 ppm, Cu 6.4-134 ppm, Zn 43.6-370 ppm, Pb 15-37 ppm area. There is a good correlation between Cr and MgO and Co among $Al_2O_3$, $Fe_2O_3$(T), MgO and Ni among $Fe_2O_3$(T), CaO, MgO whereas Cu, Zn and Pb have a low correlation for major elements in GGn area. Generally Cr, Co, Ni, and Cu have a good correlation with major elements, but a low correlation with Zn and Pb in PGn area.

Electrochemical Performance and Cr Tolerance in a La1-xBaxCo0.9Fe0.1O3-δ (x = 0.3, 0.4 and 0.5) Cathode for Solid Oxide Fuel Cells

  • Choe, Yeong-Ju;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.308-314
    • /
    • 2015
  • The electrochemical performance and Cr poisoning behavior of $La_{1-x}Ba_xCo_{0.9}Fe_{0.1}O_{3-{\delta}}$ (LBCF, x = 0.3, 0.4, 0.5) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathodes were investigated for solid oxide fuel cells (SOFCs). The polarization resistance of the LBCF/GDC/LBCF symmetrical cell was found to decrease with increasing Ba content (x value). This phenomenon might be associated with the high oxygen vacancy concentration in the LBCF sample, with x = 0.5. In addition, there was no chromium poisoning in the LBCF cathode. On the other hand, the polarization resistance of the LSCF cathode was found to significantly increase after exposure to gaseous chromium species; it appears that this result stemmed from the formation of $SrCrO_4$ phase. Therefore, it can be expected that LBCF can be a durable potential cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFC).

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

A Study on the Reduction of Color in Dye Wastewaters by Physico-chemical Processes (물리, 화학적 처리방법에 의한 염색폐수의 색도제거에 관한 연구)

  • 이준석;김민호;김영규
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.3
    • /
    • pp.29-35
    • /
    • 1993
  • This study was performed to obtain optimal conditions for reduction of color in dye wastewaters using coagulation-sedimentation processes with redox reactions. The reduction of color as well as organic matters variation was observed after coagulation-sedimentation processes using FeSO$_4$ $\cdot$ 7H$_2$O and NaOCl. Coagulation-redox reaction was done with the dose of Coagulant and oxidant at various pH values. Redox reaction was done through jar-mixing and aeration. The results of study were as follows: 1. In the coagulation-sedimentation processes using FeSO$_4$ $\cdot$ 7H$_2$O, color reduction was heigher at pH 3. With variance of dosage of FeSO$_4$ $\cdot$ 7H$_2$O, color reduction was higher at 250 mg/l. When coagulation-sedimentation using FeSO$_4$ $\cdot$ 7H$_2$O 250 mg/l was added at pH 3, the reduction of color, COD$_{Mn}$, and COD$_{Cr}$ showed 47.6%, 21.3% and 22.1%, respectively. 2. When NaOCI was added at level of 100 ppm in raw wastewater at pH 3, the reduction of color, COD$_{Mn}$, and COD$_{Cr}$ showed 30.2%, 5.5% and 6.2%, respectively. 3. After coagulation-sedimentation processes by addition of FeSO$_4$ $\cdot$ 7H$_2$O, when NaOCl was added at level of 250 mg/l in supernant, color reduction was 47.8% in aeration and 37.5% in jar-mixing. 4. Color reduction by aeration was higher than that by jar-mixing.

  • PDF

Determination of the Cr2O7 Ion by a New Absorption Spectrometric Method Coupled with a Technique of Flow Injection Analysis (흐름주입분석기법을 접목한 새로운 흡수분광분석법에 의한 Cr2O7 이온의 정량)

  • Hwang, Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.4
    • /
    • pp.322-327
    • /
    • 2000
  • A new absorption spectrometric method for the determination of the Cr$_2O_7^{2-}$ ionin acidic media has been developed. The new method is based on the oxidation-reduction reaction of the HCr$O_4^-$ ion with H$_2$O$_2$forming a deep blue CrO(O$_2$) $_2$ andis coupled with a technique of flow injection analysis(FIA). The new method provides a linear calibration curve which accurately follows the Beer's law over a wide range of the analytical concentrations(2.0 ${\times}$ $10^{-6}$M~8.0 ${\times}$ $10^{-3}$M) of K$_2$Cr$_2$O$_2$. The sensitivity of the new method is approximately two times greater than the current method and the effects of the interfering substances such as V, Co, Ni, Fe, and Mn are almost negligible except Cu.

  • PDF