• Title/Summary/Keyword: $Co_2(CO)_8$

Search Result 8,665, Processing Time 0.035 seconds

Mechanism and Activation Parameters $({\Delta}H^{\neq},\;{\Delta}S^{\neq}$ and ${\Delta}V^{\neq})$ of Electron Transfer Reaction Between $Co^{II}CyDTA\;and\;Fe^{III}$CN Complex Ions (Co(II)-CyDTA와 Fe(III)-CN 착이온간의 전자이동반응에서 활성화파라미터 $({\Delta}H^{\neq},\;{\Delta}S^{\neq}$${\Delta}V^{\neq})$ 와 반응메카니즘)

  • Yu Chul Park;Seong Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.273-280
    • /
    • 1989
  • The spectra of the $Co^{II}CyDTA$(CyDTA: cyclohexyldiaminetetraacetic acid) complex have been measured in aqueous solution of pH = 6-13.2. The red shift of the spectrum in the more basic solution was ascribed to the transformation of $CoCyDTA^{2-}$ into $CoCyDTA(OH)^{3-}$. The equilibrium constant, $K_{OH} = [CoCyDTA(OH)^{3-}]/[CoCyDTA^{2-}][OH^-]$ was $75M^{-1}$ at $40^{\circ}C$. The electron transfer reactions of $CoCyDTA^{2-}$ and $CoCyDTA(OH)^{3-}$ with $Fe(CN)_6^{3-}$ have been studied using spectrophotometric technique in the range of pH applied to the determination of equilibrium constant. The pseudo first-order rate constants observed ($k_{obs}$) were not changed upto pH = 10.8, but increased with increasing pH in the range of pH = $10.8{\sim}13.0$. The rate law reduced in the range of pH = 6-13 was $k_{obs} = (k_3[CoCyDTA^{2-}] + k_4[CoCyDTA(OH)^{3-}])/(1+K_1[CoCyDTA^{2-}])$. The rate constants of the reactions (3a) and (3b), $k_3$ and $k_4$ respectively have been determined to be 0.529 and $4.500M^{-1}sec^{-1}$ at $40^{\circ}C$. The activation entropies (147{\pm}1.1JK^{-1} mol^{-1}$ at pH = 10.8) and activation volumes $(6.25cm^3mol^{-1}, pH = 10.8)$ increased with increasing pH, while the activation enthalpy (12.44 ${\pm}$ 0.20 kcal/mole) was independent of pH. Using the pH effect on the rate constants, the activation entropies and the activation volumes, the mechanism of the electron transfer reaction for $Co^{II}-Fe^{III}$ system was discussed.

  • PDF

Two Crystal Structures of Fully Dehydrated $Ag_{12-2x}Co_x-A (x = 3 and 4.5)$ (완전히 탈수한 $Ag_{12-2x}Co_x-A$ (x = 3 및 4.5)의 결정구조)

  • Seung Hwan Song;Duk Soo Kim;Jong Yul Park;Un Sik Kim;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.520-527
    • /
    • 1988
  • The crystal structures of $Co^{2+}\;and\;Ag^+\;exchanged\;zeolite\; A,\; Ag_6Co_3$-A(a = 12.131(5)$\AA$) and $Ag_3Co_{4.5}$-A(a = 12.145(1)$\AA$), have been determined by single crystal X-ray diffraction techniques. Both structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}C$. Full-matrix leastsquares refinement converged to the final error indices of R1 = 0.045 and R2 = 0.041 for $Ag_3Co_{4.5}-A,\; and\; R1 = 0.066\; and\; R2 = 0.076\; for\; Ag_6Co_3$-A using the 258 and 189 reflections, respectively, for which I > 3$\sigma$(I). Both structures indicate that CO(Ⅱ)ions are coordinated by three framework oxygens; the Co(II) to O(3) distances are 2.118(4)$\AA$ for $Ag_3Co_{4.5}$-A and 2.106(1)$\AA$ for $Ag_6Co_3-A$, respectively. In each structure, the angle substended at Co(II), O(3)-Co(II)-O(3) is ca 120°, close to the idealized trigonalplanar value. $Co^{2+}$ ions prefer to 6-ring sites and $Ag^+$ ions prefer to 8-ring site when total number of cations is more than 8. The crystals of hydrated and dehydrated $Ag_{12-2x}Co_x-A (x > 4.5)$ had no crystalline diffraction pattern, indicating the apparent exchange limit of $Co^{2+}\; into\; Ag_{12}-A\; is\; 4.5 Co^{2+}$ ions per unit cell. $Co^{2+}$ ions hydrolyze $H_2O$ molecules and $H_3O^+$ concentraction is accumulating. These $H_3O^+$ ions destroy the zeolite structures.

  • PDF

Effects of epigallocatechin gallate on $CoCl_2-induced$ apoptosis in PC12 cells (PC12 세포에서 $CoCl_2$ 유발 세포자멸사에 대한 epigallocatechin-gallate의 역할)

  • Mo, Hyun-Chul;Choi, Nam-Ki;Kim, Seon-Mi;Kim, Won-Jae;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.13-24
    • /
    • 2006
  • Neuronal apoptotic events, consequently resulting in neuronal cell death, are occurred in hypoxic/ischemic condition. This cell death has been shown to be accompanied with the production of reactive oxygen species (ROS), which can attack cellular components such as nucleic acids, proteins and phospholipid. However, the underlying mechanisms of apoptosis induced in hypoxic/ischemic condition and its treatment methods are unsettled. Cobalt chloride $(CoCl_2)$ has been known to mimic hypoxic condition including the production of ROS. Epigallocatechin gallate (EGCG), a green tea polyphenol, has diverse pharmacologial activities in cell growth and death. This study was aimed to investigate the apoptotic mechanism by $CoCL_2$ and effects of EGCG on $CoCl_2-induced$ apoptosis in PC12 cells. Administration of $CoCl_2$ decreased cell survival in dose- and time-dependent manners and induced genomic DNA fragmentation. Treatment with $100{\mu}M$ EGCG for 30 min before PC12 cells were exposed to $150{\mu}M$ $CoCl_2$, being resulted in the cell viability and DNA fragmentation being rescued. $CoCl_2$ caused morphologic changes such as cell swelling and condensed nuclei whereas EGCG attenuated morphologic changes by $CoCl_2$. EGCG suppressed the apoptotic peak and a loss of ${\Delta}{\psi}_m$ induced by $CoCl_2$. $CoCl_2$ decreased Bcl-2 expression but Bax expression was not changed in $CoCl_2$- treated cells. EGCG attenuated the Bcl-2 underexpression by $CoCl_2$. $CoCl_2$ augumented the cytochrome c release from mitochondria into cytoplasm and increased caspase-8, -9 and caspase-3 activity a marker of the apoptotic executing stage. EGCG ameliorated the incruement in caspase-8, -9 and -3 activity, and cytochrome c release by $CoCl_2$ NAC (N-acetyl-cysteine), a scavenger of ROS, attenuated $CoCl_2-induced$ apoptosis in consistent with those of EGCG. These results suggest that $CoCl_2$ induces apoptotic cell death through both mitochondria- and death receptor-dependent pathway and EGCG has neuroprotective effects against $CoCl_2-induced$ apoptosis in PC12 cells.

  • PDF

Magnetic characteristics of Pt/Co modualted films (Pt/Co 인공격자다층막의 자기특성에 관한 연구)

  • Kim, Chan-Wook;Onishi, Atushi
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.233-240
    • /
    • 1994
  • We have investigated how the magneto-optical and recording properties of Pt/Co modulated films vary with sample preparation conditions : sputtering at various gas pressures, sputtering with Xe instead of Ar, and etching the buffer layers, etc. The magneto-optical characteristics of Pt/Co multilayers was comparable with those of currently prevailing rare-earth transition-metal alloys(Tb-Fe-Co amorphous films). On a disk of $12{\times}[Pt10.7\;{\AA}/Co2.8{\;}{\AA}]$ multilayer enhanced with 70nm silicon nitride, we have achieved a CNR of 36dB with a reading laser(${\lambda}\;=\;780nm$) power of 2.5-4.5mW for 720KHz carrier at 1.4m/s and the enhanced kerr rotation angle of $1.23^{\circ}$ at 780nm. It is suggested that Pt/Co modulated films clearly are very promising magneto-optical materials for a commercially use.

  • PDF

Production of the ultra fine-composite powders of WC-Co and WC-Ni (초미립의 탄화 텅스텐-코발트와 탄화 텅스텐-니켈 복합분말의 제조)

  • 김병재;윤병하
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.87-107
    • /
    • 1993
  • The grain size of the final products of WC-Co and WC-Ni composite powders is dependent on the size of the starting material and the conditions employed for the reduction and carburization. APT-Co and -Ni com-plex salts were prepared by the substitution reaction between ammonium ions in APT and the metal ions in Co(NO3)2 and Ni(NO3)2 solutions of different concentrations(0.1 to 0.7M) at $50^{\circ}C$ and the grain sizes of the com-plex salts was $0.54~0.76\mu\textrm{m}$. The complex which calcined the complex salts at $700^{\circ}$~80$0^{\circ}C$ for 60min. were 0.2~0.5$\mu\textrm{m}$. W-Co($5.92^{\circ}C$) and -Ni(6.95%) powders which reduced the complex oxides with H2d atmo-sphere(flow rate;600cc/min.) at $700^{\circ}$~$800^{\circ}C$ for 60min. were $0.5~0.6\mu\textrm{m}$. The mean grain sizes of WC-Co and WC-Ni composite powders which carburized both complex metals of W-Co and W-Ni at $800^{\circ}C$ for 60min. were $0.5~0.6\mu\textrm{m}$, and take place the coarsening of the grain above $800^{\circ}C$ and the optmium ratio of C3H8 and H2 was 0.2 for the control of the free carbon. The effect of Co contents on the particle sizes decreased from 0.4 to $0.25\mu\textrm{m}$ with increasing the content from 2.0 to 7.6w%. The activation energies on the reductions of oxides and the formations of carbides were as follows ; W-Co : Q = 8.7 kcal/mole, W-Ni : Q = 8.1 kcal/mole, WC-Co pow-der : Q = 17.8 kcal/mole, WC-Ni powder : Q = 16.6 kcal/mole.

  • PDF

Experimental Study on Compact type CO2 Gas Cooler(1) - Heat Flowrate and Pressure Drop in a Multi-Tube-In-Tube Helical Coil Type Gas Cooler - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1) -다중관식 헬리컬 코일형 가스냉각기내 CO2의 열유량과 압력강하-)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 2010
  • The heat flowrate and pressure drop of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were investigated experimentally. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat flowrate of $CO_2$ in the test section is increased with the increase in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat flowrate of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly higher than that of $CO_2$ in the double pipe type gas cooler, while the pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly lower than that of $CO_2$ in the double pipe type gas cooler. Therefore, in case of the application of $CO_2$ at the multi-tube-in-tube helical coil type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.

Experimental Study on Compact type CO2 Gas Cooler(2) - Experiments and Predictions on Heat Flowrate and Pressure Drop - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(2) - 열유량과 압력강하에 관한 실험 및 예측 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.259-266
    • /
    • 2010
  • The heat flowrate and pressure dorp of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were predicted using LMTD method and compared with the experimental data. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], and the cooling pressure of gas cooler were from 8 to 10 [MPa], respectively. The LMTD method is used to predict the heat flowrate and pressure drop of supercritical $CO_2$ during in-tube cooling. The equations used by LMTD method were Gnielinski correlation for $CO_2$ and Dittus-Boelter correlation for coolant, respectively. The equation used to predict the pressure drop of $CO_2$ and coolant is Blasius correlation. In comparison of heat flowrate and pressure drop of $CO_2$ measured by experiment to that predicted by LMTD method, the experimental heat flowrate and pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler shows a relatively good agreement with that predicted by LMTD method.

Magnetostriction and Stress of NiFeCr/(Cu/Co90Fe10)×N/NiFeCr Multilayer Films (NiFeCr/(Cu/Co90Fe10)×N/NiFeCr 다층박막의 자기변형과 응력에 관한 연구)

  • Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2010
  • The magnetostriction and stress of multilayer $NiFeCr/(Cu/Co_{90}Fe_{10}){\times}N/NiFeCr$ films were investigated. As the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers was increased, the saturation magnetostriction decreased from $-5.6\times10^{-6}$ at 2 bilayers to $-8.5\times10^{-6}$ at 20 bilayers. A change of CoFe thickness from 10 to $20{\AA}$ caused a decrease in the magnitude of tensile stress from 980MPa to 590MPa as the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers increased from 2 to 20. The maximum magnetostrictive anisotropy field that could be developed due to nonzero magnetostriction and stress is calculated to be 135.7 Oe when the number of Cu $15{\AA}$/CoFe $15{\AA}$ bilayers is 10.

Effect of Calcination Temperature of Size Controlled Microstructure of LiNi0.8Co0.15Al0.05O2 Cathode for Rechargeable Lithium Battery

  • Park, Tae-Jun;Lim, Jung-Bin;Son, Jong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.357-364
    • /
    • 2014
  • Size controlled, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathode powders were prepared by co-precipitation method followed by heat treatment at temperatures between 750 and $850^{\circ}C$. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance. The synthesized $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ has a good electrochemical performance with an initial discharge capacity of $190mAhg^{-1}$ and good capacity retention of 100% after 30 cycles at 0.1C ($17mAg^{-1}$). The capacity retention of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ is better than that at 800 and $850^{\circ}C$ without capacity loss at various high C rates. This is ascribed to the minimized cation disorder, a higher conductivity, and higher lithium ion diffusion coefficient ($D_{Li}$) observed in this material. In the differential scanning calorimetry DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by calcined at high temperature, and this decrease is especially at $850^{\circ}C$. This behavior implies that the high temperature calcinations of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ prevent phase transitions with the release of oxygen.

Estimation and Feature of Greenhouse Gas Emission in Building Sector by National Energy Statistic (국가 에너지통계에 따른 건물부문 온실가스 배출량 추계 및 특성)

  • Jeong, Young-Sun;Kim, Tae-Hyoung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.187-195
    • /
    • 2019
  • In December 2015, The Paris Agreement was adopted to undertake ambitious efforts to combat climate change. Korean government announced its goal of reducing the country's greenhouse gas emissions by up to 37% below business as usual projections by 2030 in 2015. The purpose of this study was to set up the calculation methodology of GHG emission($CO_{2e}$) in building sector and to estimate the annual GHG emission in building sector based on national energy consumption statistic. The GHG emission from buildings is about 135.8 million ton $CO_{2e}$ as of 2015, taking up about 19.6% of Korea's entire emission and is about 144.7 million ton $CO_{2e}$ in 2017. The GHG emission of building sector is increasing at annual rate of 2.0% from 2001 to 2017. The GHG emission from electricity consumption in buildings is 91.8 million ton $CO_{2e}$ in 2017, is the highest $CO_2$ emission by energy source. The results show that the intensity of GHG emission of residential building sector is $40.6kg-CO_{2e}/m^2{\cdot}yr$ and that of commercial building sector is $68.4kg-CO_{2e}/m^2{\cdot}yr$.