DAEHAN HWAHAK HWOEJEE (Journal of the Korean Chemical Society) Vol. 33, No. 3, 1989 Printed in the Republic of Korea

Co(II)-CyDTA 와 Fe(III)-CN 착이온간의 전자이동반응에서 활성화파라미터 (△*H*^{*}, △*S*^{*} 및 △*V*^{*})와 반응메카니즘

- 朴裕哲[™]・金聖洙

경북대학교 자연과학대학 화학과 (1988. 7. 1 접수)

Mechanism and Activation Parameters ($\Delta H^{\tilde{T}}, \Delta S^{\tilde{T}}$ and $\Delta V^{\tilde{T}}$) of Electron Transfer Reaction Between CoⁿCyDTA and Fe^{III} CN Complex Ions

Yu Chul Park[†] and Seong Su Kim

Department of Chemistry, Kyungpook National University, Taegu 702-701, Korea (Received July 1, 1988)

요 약. Co(II)-CyDTA 착물의 흡수스펙트럼을 pH=6.0~13.2의 수용액에서 측정하였다. 흡수에너 지는 pH가 증가할수록 낮은 에너지로 이동하였고, 이 현상은 CoCyDTA²⁻와 CoCyDTA(OH)³⁻간의 평형상수 K_{0H}=[CoCyDTA(OH)³⁻]/[CoCyDTA²⁻][OH⁻]로 설명할 수 있었고, 그 값은 40℃에서 75 *M*⁻¹이었다. Co(II)-CyDTA 와 Fe(III)-CN 착이온간의 전자이동반응은 K_{0H} 측정과 같은 용액조건에서 분광광도법을 이용하여 고찰하였다. 측정한 k_{obs}는 pH=10.8까지는 거의 일정하였으나 pH>10.8에서는 pH의 중가에 따라 증가하였다. pH=6.0~13.0에서 적용할 수 있는 속도법칙은 k_{obs}=(k_a (CoCyDTA²⁻]+k_a(CoCyDTA(OH)³⁻))/(1+K₁(CoCyDTA²⁻))이었다. 반응 (3a)와 (3b)의 속도상 수 k_a와 k는 40℃에서 각각 0.529*M*⁻¹sec⁻¹와 4.500*M*⁻¹sec⁻¹이었다. 활성화엔트로피(147±1.1JK⁻¹ mol⁻¹, pH=10.8)와 활성화체적(6.52 cm³mol⁻¹, pH=10.8)은 pH가 증가할수록 증가하였지만, 활성 화엔트로피, 활성화체 적(6.52 cm³mol⁻¹, pH=10.8)은 만H가 증가할수록 증가하였지만, 활성 화엔트로피, 함성화체 적에 대한 pH의 영향을 각각 이용하여 Co(II)-Fe(III)의 전자이동 반응메카니즘을 논의하였다.

ABSTRACT. The spectra of the Co^{II} CyDTA(CyDTA: cyclohexyldiaminetetraacetic acid) complex have been measured in aqueous solution of pH = 6 - 13.2. The red shift of the spectrum in the more basic solution was ascribed to the transformation of CoCyDTA²⁻ into CoCyDTA(OH)³⁻. The equilibrium constant, $K_{OH} = [CoCyDTA(OH)^{3-}] [CoCyDTA^{2-}] [OH^{-}]$ was 75M⁻¹ at 40 °C. The electron transfer reactions of CoCyDTA²⁻ and CoCyDTA(OH)³⁻ with Fe(CN)₆³⁻ have been studied using spectrophotometric technique in the range of pH applied to the determination of equilibrium constant. The pseudo first-order rate constants observed (k_{obs}) were not changed upto pH = 10.8, but increased with increasing pH in the range of pH = 10.8 ~13.0. The rate law reduced in the range of pH = 6-13 was $k_{obs} = (k_3 [CoCyDTA^{2-}] + k_4 [CoCyDTA$ $(OH³⁻])/(1 + K_1 (CoCyDTA^{2-}])$ The rate constants of the reactions (3a) and (3b), k_3 and k_4 respectively have been determined to be 0.529 and 4.500 $M^{-1} \sec^{-1}$ at 40 °C. The activation entropies (147 ± 1.1] K⁻¹ mol⁻¹ at pH = 10.8) and activation volumes (6.25cm³ mol⁻¹ at pH = 10.8) increased with increasing pH, while the activation enthalpy (12.44 ± 0.20 kcal/mole) was independent of pH. Usaing the pH effect on the rate constants, the activation entropies and the activation volumes, the mechanism of the electron transfer reaction for Co^{II} - Fe^{III} system was discussed.

서 론

O, 대칭성을 가진 착이온의 전자이동반응에서 전자전달은 inner-sphere 메카니즘과 outer-sphere 메카니즘으로 알려진 두가지 경로 즉, e_g (σ[•])→ e_g(σ[•])와 $b_{g}(\pi^{•}) \rightarrow b_{g}(\pi^{•})$ 에 따라 일어난다. 킬레이트 리간드의 코발트(II) 착이온 과 시아노 - 철(III) 착이온간의 산화 - 환원반응은 Adamson에 의하여¹ 처음 연구되었으며, 이후 이 에 대한 연구가 계속 수행되어 왔다^{2~11}. 그런데 Co(II)-Fe(III)계의 전자이동반응 연구에서 binuclear 종, Co(II)-NC-Fe(III)이 발견되므로서, 이 반응은 (1)과 (2)식으로 나타내어지는 innersphere 메카니즘으로 알려졌다.

$$\operatorname{Co}^{u}Y + \operatorname{Fe}^{\bullet}(\operatorname{CN})_{s}X \rightleftharpoons \operatorname{YCo}^{u} - \operatorname{NC} - \operatorname{Fe}^{\bullet}(\operatorname{CN})_{s}X$$
(1)
 $\operatorname{YCo}^{u} - \operatorname{NC} - \operatorname{Fe}^{u}(\operatorname{CN})_{s}X \rightleftharpoons \operatorname{Co}^{u}Y + \operatorname{Fe}^{\bullet}(\operatorname{CN})_{s}X$
(2)

여기서 Y는 ethylenediaminetetraacetic acid (EDTA)나 propylenediaminetetraacetic acid (PDTA)와 같은 킬레이트 리간드이고, X는 CN-이나 NH₃와 같은 리간드를 나타낸다.

이후 이 반응에서 binuclear 종인 Co(II) -NC-Fe(III)은 전자이동 과정에서 생성하는 중간 체가 아니라, 반응물(Co²⁺ 및 Fe³⁺종)과 평형을 유지하는 화학종으로 밝혀졌다. 이와 함께 Marcus 식에^{12~14} 의하여 분석된 Co(II)-Fe(III) 계의 전자이동반응의 메카니즘 역시 outer-sphere 로 알려져 있다¹⁵⁻¹⁷, outer-sphere 메카니즘에서 전자이동은 산화제와 환원제의 전자궤도함수간에 직접 일어나므로, 반응 (1)에서 평형상태를 유지 하는 Co(II)Y와 Co(II)-NC-Fe(III) 중에 Co-(II)Y만 산화-환원반응에 관여하게 된다. 즉, Co(II)와 Fe(III)간의 전자이동 반응식은 (3)식 으로 나타낼 수 있다.

$C_{O}(\blacksquare) Y + F_{e}(\blacksquare)(CN)_{s}X \rightarrow C_{O}(\blacksquare) Y$ $+ F_{e}(\blacksquare)(CN)_{s}X \qquad (3)$

이때 두 반응물질이 서로 반대 하전을 가질 경우, 전자이동이 일어나기 전에 먼저 이온쌍이 형성될 수도 있다. 본 연구에서는 반응 (3)의 Y를 EDTA나 PDTA와 유사한 컬레이트 리간드 CyDTA(cyclohexyldiaminetetraacetic acid)로 한 환원 제, Co(II)-CyDTA 착이온과 X를 CN⁻으로 한 산화제, Fe(III)-CN 착이온가의 전자이동 반 응성을 pH=6~13에서 고찰하였다. 전이금속 착 이온의 리간드 치환반응이나 이성질화반응 연구에 서 많이 이용되는 활성화엔탈피와 활성화엔트로 피, 활성화체적을^{18,19}, Co(II)-Fe(III)의 전자이 동반응에서 측정하였다. 이들 활성화파라미터는 속도상수에 대한 pH의 영향에서와 마찬가지로 넓 은 pH 영역에서 측정하였다. 높은 pH(>10.8)에 서 Co(II)-Fe(III)의 산화 - 환원 반응메카니즘은 CyDTA를 포함한 용액에서 Co(II) 화학종간의 평형관계와 함께 고찰하였다.

실 험

학물합성과 측정용액 제조. 착이온 Co(II) -CyDTA(CyDTA: cyclohexyldiaminetetraacetic acid)은 문헌에 따라 합성하였으며^{20,21}, 측 정용액에서 CyDTA의 농도는 Co²⁺ 이온농도에 비하여 항상 과량(10배)으로 하였다.

산화제 Fe(CN)₆³⁻ 착이온의 농도는 최대흄 수파장 420 nm(ε=1023 *M*⁻¹cm⁻¹)에서 측정한 흄 광도를 이용하여 결정하였다^{18,19}, pH=6~13와 이 온강도(0.5)는 표준용액 NaOH 와 NaClO₄를 사 용하여 각각 조절하였다. 사용한 시약 Na₃Fe (CN)₆, NaClO₄, NaOH, H₄CyDTA, Co-(NO₃)₂, C₂H₅OH, hexamine, xylenol orange 등은 모두 특급 혹은 일급시약으로 정체하 지 않고 그대로 사용하였으며, 측정용액 제조에 사용한 물은 전도도수로 하였다.

전자이동 반응속도 측정. 전자이동반응은 환원 제 Co(II)-CyDTA 착이온의 농도를 산화제 Fe-(III)-CN 착이온의 농도(6×10⁻⁵ M)에 비하여 10 배 이상 과량으로 하여, 반응 (3)의 속도상수를 유사일차반응 속도상수로 하였다. 상압에서 속도 상수는 UV-260-shimazu UV-visible recording spectrophotometer 를 사용하여 측정하였다. 온 도변화(25, 30, 35, 40°C)는 광학셀 주위에 동관 으로 제작된 자켙을 순환 항온조, Haake F-439 *Journal of the Korean Chemical Society*

274

circulator에 연결하여 조절하였다. 고압에서 실 험은 고압용 광학셀을 사용하였으며, 온도조절은 상압에서와 동일한 방법으로 하였다. 고압하에서 의 실험방법은 이미 보고된 바 있지만^{22~24}, 압력 은 압력발생기를 고압용 광학셀에 연결하여 이 장 치를 UV-210A-shimazu spectrophotometer에 고정시킨 다음 발생시켰다(1, 500, 1000, 1500 bar).

전 pH에서 Co(II)-Fe(III)계의 전자이동반응 의 속도는 산화제 Fe(CN)₆³⁻ 착이온의 최대흡수 과장 420 nm에서 시간(t)에 따라 흡광도 변화를 측정하여 결정하였다. log(At-A_{*}) vs. t의 기울 기에서 얻은 반응 (3)의 속도상수는 [Co(II)] > [Fe(III)] 조건하에 결정된 유사일차 속도상수이 다. 여기서 At와 A_{*}는 시간 t와 평형상태에서 Fe(CN)₆³⁻ 착이온의 흡광도(λ=420 nm)를 각각 나타낸다.

Co(II)-CyDTA를 포함한 수용액의 pH가 중 가하면(>10.8) CoCyDTA²⁻ 착이온 외에 CoCyDTA(OH)³⁻ 착이온이 형성되므로, 넓은 pH=6~13 영역에서 실험한 Co(II)-Fe(III)계의 환원제는 CoCyDTA²⁻와 CoCyDTA(OH)³⁻로 두 착이온 모두 전자이동반응에 관여한다. 따라서 넓은 pH에서 전자이동반응의 메카니즘을 고찰하 려면 먼저 CoCyDTA²⁻와 CoCyDTA(OH)³⁻간 의 평형상수를 측정하여야 한다. 이 반응의 평형 은 CoCyDTA(OH)³⁻ 착이온의 특성 과장인 580 nm에서 pH 변화에 따른 흡광도를 측정하여 관찰 하였다. 속도법칙을 분석하는데 이용한 평형상수 는 상압, 0.5*M*, NaClO₄, 40°C에서 측정한 값이 었다.

결과 및 고찰

CoCyDTA²⁻와 CoCyDTA(OH)³⁻간의 평형. CyDTA 리간드를 포함한 Co(II) 이온 수용액에 서 pH에 따른 광흡수 스팩트럼을 측정하였다 (Fig. 1). 여기서 알 수 있듯이 pH가 7에서 13으 로 증가함에 따라 최대흡수과장은 430 nm 에서 580 nm 로 red shift 하였다. 이와 같은 Co(II) -CyDTA 계의 광학적 특성을 관찰하기 위하여 580 nm 에서의 흡광계수 변화를 pH에 따라 측정

Fig. 2. Plot of molar absorptivities of Co^{IL}CyDTA solution as a function of pH at 580nm, 40 °C and μ = 0.5.

하여 Fig. 2에 도시하였다. Fig. 2에 잘 나타난 것처럼 pH=9,1~10.8 범위에서 흡광계수의 변화 는 없었다. 이 현상은 CyDTA를 포함한 Co(II) 수용액에서 착이온 종의 변화가 일어나지 않기 때 문이다. 그러나 pH=10.8~13.0에서 흡광계수는 pH의 증가에 따라 중가하였으며, pH>13.0인 용액에서 흡광계수는 다시 pH의 영향을 받지 않 았다. 이것은 pH<10.8과 pH>13.0에서 존재하 는 Co(II) 화학종은 각각 CoCyDTA²-와 CoCyDTA(OH)⁵⁻이고, pH=10.8~13.0에서는 이들 두 착이온이 평형을 유지하면서 함께 존재할 것으로 생각된다. Fig. 2의 흡광계수 변화경향과 Fig. 1의 스펙트럼을 비교할 때 CoCyDTA (OH)³⁻ 착이온의 d-d 흡수스펙트럼의 최대흡수파 장은 580nm이다. 이러한 생각은 다른 코발트 착 물에서도 볼 수 있으므로¹⁸, CyDTA와 Co(II) 이온을 포함한 용액의 흡수에너지가 변하는 것은 pH의 증가에 따라 CoCyDTA(OH)³⁻ 착이온의 생성 때문이라 할 수 있다.

CoCyDTA²⁻ 착이온과 CoCyDTA(OH)³⁻ 착 이온간의 평형반응, (4)의 평형상수(K_{OH})는 분 광광도법²², 즉 (5)식을 이용하여 결정하였다.

 $CoCyDTA^{2-} + OH^{-} \stackrel{K_{OH}}{=} CoCyDTA (OH)^{3-}$ (4) $K_{OH} = \frac{[CoCyDTA (OH)^{3-}]}{[CoCyDTA^{2-}] (OH^{-}]} = \frac{\varepsilon_0 - \varepsilon}{(\varepsilon - \varepsilon_{OH}) (OH^{-})}$ $\frac{\varepsilon_0 - \varepsilon}{(\varepsilon - \varepsilon_{OH})} = K_{OH} (OH^{-})$ (5)

(5)식에서 ε는 580 nm 에서 겉보기 흡광계수이 고, ε₀와 ε_{0H}는 같은 파장에서 CoCyDTA²⁻와 CoCyDTA(OH)³⁻의 흡광계수를 각각 나타낸다. *Fig.* 2의 흡광계수를 이용하여 (5)식에 따라 (ε₀ -ε)/(ε-ε_{0H}) vs. [OH⁻]를 *Fig.* 3과 같이 도시하 면 기울기로부터 K_{0H}를 구할 수 있고, 그 값은 K_{0H}=75 M⁻¹(40°C)이었다. 금속이온에 결합된 CyDTA의 -COO⁻가 OH⁻에 의하여 치환되면 strain 이 감소되어 반응 (4)의 평형은 K_{0H}>1일 수도 있다. 또한 *Fig.* 1과 2에서 알 수 있듯이 CoCyDTA(OH)³⁻의 농도를 증가시키는 높은 pH 에서 용액의 흡광계수는 증가하였다.

이것은 CoCyDTA(OH)³⁻ 착이온의 대칭성이 CoCyDTA²⁻ 착이온에 비하여 낮기 때문에 일어

Fig. 3. Plot of $(\varepsilon_0 \cdot \varepsilon)/(\varepsilon - \varepsilon_{0H})$ vs. [OH⁻] according to equation (5) at 40 °C and $\mu = 0.5$.

날 수 있는 현상으로 생각할 수 있다.

전자이동 반응속도에 대한 pH의 영향. 40°C 에서 측정한 Co(II)-CyDTA와 Fe(III)-CN 간 의 산화 - 환원반응의 속도상수(k_{obs})를 Fig. 4에 도시하였다. Fig. 4에서 나타난 k_{obs} 에 대한 pH 의 영향을 보면 Fig. 2에서 흉광계수에 대한 pH 의 영향과 유사함을 알 수 있다. pH>10.8 이상 에서 k_{obs} 의 증 가는 Co(II) 화 학종 이 CoCyDTA²⁻ 착이온에서 CoCyDTA(OH)³⁻ 착 이온으로 변하는 pH 조건과 거의 일치하였다. pH=10.8~13에서 평형을 이루는 두 착이온, CoCyDTA²⁻와 CoCyDTA(OH)³⁻ 모두 Fe-(CN)₆³⁻ 이온과의 전자이동반응에서 각각 다른 경로를 통하여 환원제로 작용한다. 이들 반응을 나타내면 (3a)와 (3b)식과 같다.

CoCyDTA²⁻ + Fe (CN) $\stackrel{3^-}{\bullet} \xrightarrow{\bullet}$ CoCyDTA⁻ + Fe (CN) $\stackrel{4^-}{\bullet}$ (3a)

CoCyDTA (OH)³⁻ + Fe (CN)³⁻ $\stackrel{\kappa_*}{\rightarrow}$

$$CoCyDTA (OH)^{2-} + Fe (CN)^{4-} (3b)$$

Fig. 4. Plot of k_{obs} vs. pH for the electron transfer reaction of Co^{II}-CyDTA (6 × 10⁻⁴M) with Fe^{III}-CN (6 × 10⁻⁵M) at 40 °C and μ = 0.5.

Journal of the Korean Chemical Society

Co(II)-CyDTA 와 Fe(III)-CN 착이온간의 전자이동반응

반응 (3a)와 (3b)식에서 이온쌍이 형성되는 과정 이 전이상태라면, 입체장애와 하전효과를 생각할 때 CoCyDTA(OH)³⁻에 비하여 CoCyDTA²⁻가 이온쌍을 형성하기 쉬우므로 &>&이어야 한다. 그러나 Fig. 4에서 보면 CoCyDTA(OH)³⁻ 착이 온이 생성하는 pH 조건에서 속도상수는 더 증가 하였다. 따라서 Co(II)-CyDTA 와 Fe(III)-CN 간의 전자이동반응에서 이온쌍 형성과정이 속도결 정 단계가 될 수 없다.

CoCyDTA²⁻와 CyDTACo-NC-Fe(CN)₅⁵⁻간 의 평형반응 (1)과 반응 (3a)가 일어나는 pH< 10.8에서 유사일차반응 속도상수 k_{obs}는 다음과 같 이 나타낼 수 있었다²⁵.

$$k_{\text{obs}} = \frac{k_s (\text{CoCyDTA}^{s-})}{1 + K_s (\text{CoCyDTA}^{s-})}$$
(6)

$$k_{\rm obs}^{-1} = \frac{1}{k_{\rm s} \left(\rm CoCyDTA^{t-} \right)} + \frac{R_{\rm 1}}{k_{\rm s}}$$
(7)

(7)식의 k_{obs}⁻¹를 [CoCyDTA²]⁻¹에 대하여 도시 하여 기울기와 절편에서 얻은 k₃와 K₁는 각각 k₃=
0.529 M⁻¹s⁻¹와 K₁=523 M⁻¹이었다(Fig. 5).
CoCyDTA²⁻ 착이온과 CoCyDTA(OH)³⁻ 착이 온이 평형을 이루는 pH=10.8~13.0에서 속도식 은 (6)식과 비슷한 (8)식으로 표현된다.

$$k_{obs} = \frac{k_{4} (\text{CoCyDTA}^{2-}) + k_{4} (\text{CoCyDTA} (\text{OH})^{3-})}{1 + K_{1} (\text{CoCyDTA}^{2-})}$$
(8)

Co(II) 이온의 총괄농도[Co(II)],는

$$(Co(II))_{t} = (CoCyDTA^{t-}) + (CoCyDTA(OH)^{t-})$$
(9)

이므로 (8)식은 (10)식으로 된다.

$$k_{obs} = \frac{(k_1 + k_1 K_{OH}(OH^-)) [Co(\Pi)]_t}{1 + K_{OH}(OH^-) + K_1 (Co(\Pi))_t}$$
(10)

$$\frac{1}{k_{obs}} = \frac{1 + K_{oH}(OH^{-})}{(k_{s} + k_{s}K_{oH}(OH^{-})) (Co(\underline{\Pi}))_{t}} + \frac{K_{i}}{k_{s} + k_{s}K_{oH}(OH^{-})}$$
(11)

(11)식에서 [OH-]를 일정하게 하고 kobs-1를 [Co (II)],-1에 대하여 도시하면 k가 얻어진다(*Fig.*

277

Fig. 5. Plot of k_{obs}^{-1} vs. $[Co^{IL}CyDTA]^{-1}$ according to equation(7) at 40 °C, $\alpha = 0.5$ and pH = 6.

Fig. 6. Plots of k_{obs}^{-1} vs. $[Co^{II}]_{t}^{-1}$ in both solutions of pH = 12.3 and pH = 12.6 according to equation(11) at 40 °C and $\mu = 0.5$.

6). &=4.5*M*⁻¹s⁻¹이었으며, *Fig.* 6에서 알 수 있듯이 &는 pH에 거의 영향을 받지 않았다.

전자이동반응의 활성화파라미터. pH=9.0 ~13.2에서 전자이동반응의 속도상수에 대한 온 도의 영향을 Table 1과 Fig. 7에 나타내었다. 각 온도에서 pH에 따른 속도상수의 변화가 거의 비 숫하므로, 메카니즘에 대한 온도의 영향은 없을 것으로 생각된다. 반응의 활성화변수는 다음 식 (12)로부터 구하였다. 여기서 ×와 h는 각각 Boltzmann 상수와 Planck 상수를 의미한다. (12)식에서 얻은 활성화엔탈피(ΔH*=52±2.1kJ M⁻¹)은 pH의 영향을 받지 않았으나, 활성화엔 트로피(ΔS*)은 pH의 영향을 받는 것으로 나타났 다(Fig. 8).

Table 1. Rate constants($h_{obs} \times 10^4$, sec⁻¹) of electron transfer reaction for Co^{II}-Fe^{III} system at $\mu = 0.5$

T(°K)	9.0	10.2	10.8	рН 11.7	12.5	13.0	13.2
298	0.85	0.87	0.85	2.82	4.01	6.01	6.03
303	1.31	1.28	1.34	4.04	6.51	8.92	8.97
308	1.84	1.86	1.82	5.64	9.02	12.68	12.65
313	2.49	2.47	2.51	8.21	12.24	17.53	17.53

Fig. 7. Plots of rate $constants(k_{obs})$ of electron transfer reactions as a function of pH at several temperatures.

$$\log k_{obs} - \log (xT/h) = \frac{-\Delta H^*}{2.303 \text{RT}} + \frac{\Delta S^*}{2.303 \text{R}}$$
 (12)

Fig. 8에서 ΔS^{*}에 대한 pH의 영향을 보면, Fig. 4에 나타난 ‱의 pH 영향과 대단히 유사하 다. 따라서 Co(II)-Fe(III)계의 전자이동반응의 pH 영향은 거의 ΔS^{*}에 의하여 지배될 것으로 생 각된다.

ΔS*는 정전억압효과에 의한 변화(ΔS*etec) 와 반응종 자체의 체적변화에 의한 것으로 (ΔS*int) 나눌 수 있다. outer-sphere 메카니즘의 전자이동반응이라도 전이상태에서 이온쌍 형성이 거의 불가능하다면, 하전효과에 의한 ΔS*etec는 무 시할 수 있다. 이에 따라 반응 (3a)와 (3b)에서 ΔS*etec는 무시할 수 있으므로 이 반응에서 ΔS*는 거의 ΔS*int에 의하여 지배될 것으로 생각된다. ΔS*int는 ΔS*int<0이므로 실험결과, ΔS*<0와 일치한다. pH의 증가에 따라 ΔS*의 증가는 CoCyDTA²-와 CoCyDTA(OH)³⁻, 두 착이온간 의 평형농도 변화로 설명할 수 있다. Co(II) -CyDTA 계에서 CoCyDTA²⁻나 CoCyDTA (OH)³⁻ 착이온은 모두 시크로핵산의 입체적 장애

Fig. 8. Plot of activation entropies(ΔS^*) vs. pH at 1 atm and u = 0.5

를 생각하지 않을 수 없다. 따라서 전자전달을 위 한 산화제 Fe(CN)₀³⁻ 착이온의 접근은 시크로핵 산의 트란스 방향으로 유사 Oh의 평면에서 일어 난다. CoCyDTA2-에서 카르복실이온의 OH- 이 온에 의한 치환도 평면내에서 일어난다. Fe (CN),3- 착이온과 산화 - 환원반응을 일으킬 때 CoCyDTA²⁻와 CoCyDTA(OH)³⁻ 두 착이온의 (-)하전효과와 자유 카르복실기의 입체적 장애가 서로 다르다. 이러한 효과를 고려할 때 CoCvDTA(OH)³⁻ 착이온을 포함한 반응(3b)의 △S^{*}int는 CoCyDTA²⁻ 착이온을 산화제로 하는 반응 (3a)의 ΔS*int보다 큰 값을 가질 것이다. Fig. 8에서 알 수 있듯이 ΔS*im에 의하여 지배되 는 ΔS*는 pH의 증가에 따라 더욱 더 양의 값을 나타내었다. 이 결과는 두 산화제 CoCyDTA²⁻와 CoCyDTA(OH)³→ 중에서 pH가 높을수록 △S^{*}im를 크게 하는 CoCyDTA(OH)₃-의 농도가 중가한다는 사실과 일치한다.

반응속도상수에 대한 압력의 영향은 일반적으로 (13)식과 같이 주어진다²³.

$$\ln \left(\mathbf{k}_{o} / \mathbf{k}_{i} \right) = \mathrm{bp} + \mathrm{cp}^{*} \tag{13}$$

kp와 ki은 압력 p와 1기압에서 속도상수를 의미 한다. Co(II)-CyDTA와 Fe(III)-CN 간의 전자 이동반응의 속도상수에 대한 압력의 영향을 Table 2에 수록하였다. (13)식에 따라 P⁻¹In(kp/ki)vs. p로부터 절편 b를 얻을 수 있고, b에 -RT를 곱하여 각 pH에서 얻은 활성화체적 ΔV*를

Co(II)-CyDTA 와 Fe(III)-CN 착이온간의 전자이동반용

Table 2. Rate constants of electron transfer reactions for Co^{II}-Fe^{III} system at given pressure, 25 °C and $\mu = 0.5$

P, bar	9.0	10.2	10.8	рН 11.7	12.5	13.0	13.2
1	0.85	0.87	0.85	2.82	4.01	6.01	6.03
400	0.95	0.97	0.95	3.03	4.18	6.21	6.18
800	1.07	1.10	1.08	3.29	4.39	6.49	6.45
1200	1.24	1.26	1.24	3.57	4.68	6.93	6.89

Table 3. Activation volumes(ΔV^*) of electron transfer reaction for Co^{IL}Fe^{III} system at 25 °C and μ = 0.5

рН	9.0	10.2	10.8	11.7	12.5	13.0	13.2
$-\Delta V^{+}$; cm ³ mol ⁻¹	6.34	6.30	6.52	4.31	2.23	1.54	0.89

Table 3와 Fig. 9에 나타내었다. Fig. 9에 나타난 바와 같이 pH에 따른 ΔV^* 의 변화경향은 ΔS^*_{int} 에 의하여 지배되는 ΔS^* 에 대한 pH의 영향 (Fig. 9)과 대단히 유사하다. 따라서 ΔV^* 도 정전 억압효과에 의한 체적변화(ΔV^*_{elec})보다는 반응물 자체에 의한 체적변화(ΔV^*_{int})에 더 지배될 것으 로 생각된다.

CoCyDTA²⁻와 CoCyDTA(OH)³⁻ 착이온은 모두 높은 스핀상태인 ½⁵(π*)e_g²(σ*) 전자배 열을 가지며, Fe(CN),3- 착이온은 낮은 스핀상태 인 *b_g⁵*(π^{*})eg[°](σ^{*}) 전자배열을 가진다. 일반적 으로 이러한 전자배열을 가진 착이온간의 산화 - 환 원반응은 bg*(환원제)→ bg*(산화제)에 따라 전 저전달이 일어난다. 그런데 CyDTA 착화합물도 EDTA에서와 마찬가지로 2 축 방향의 리간드장은 xy 평면에 비하여 약할 것이므로, t_{2g}*중에 dxy 의 에너지는 dyz 나 dzx 의 에너지보다 약간 높은 상태에 있을 것으로 생각된다. 이 때문에 환원제 Co(II)-CyDTA의 d 궤도함수중에 dxy 가 전자 공여에 이용되고, 이때 산화제 Fe(III)-CN의 접 근은 Co(II) 착이온의 xy 평면이 된다. 이러한 가능성은 속도상수와 활성화체적에 대한 pH의 영 향에서 논의한 바 있는 Co(II)-DyDTA의 입체적 효과에 의해서도 설명할 수 있다. Co(II) -CyDTA에서 시크로핵산과 자유카르복실기는 xv 평면에 위치하므로, 이들의 트란스방향 즉, 같은 xy 평면에 Fe(CN).3- 착이온의 접근이 일어난다.

279

Fig. 9. Plot of activation volumes vs. pH at 25 °C and $\mu = 0.5$.

본 연구는 1987년 문교부 기초과학육성 연구비 와 경북대 학술진흥재단에 의하여 지원되었음.

인 용 문 현

- A. W. Adamson and E. Gonick, *Inorg. Chem.*, 2, 129 (1963).
- 2. J. H. Espenson, ibid., 4, 121 (1965).
- D. H. Huchital and R. G. Wilkins, *ibid.*, 6, 1022 (1967).
- U. S. Mehrotra, M. C. Agrawal and S. P. Mushran, J. Phys. Chem., 73, 1996 (1969).
- R. G. Wilkins, R. E. Yelin, J. Am. Chem. Soc., 92, 1191 (1970).
- D. H. Juchital and R. J. Hodges, *Inorg. Chem.*, 12, 1004 (1973).
- L. Rosenhein, D. Speiser and A. Haim, *ibid.*, 13, 1571 (1974).
- H. Ogino, M. Takahashi and N. Tanaka, Bull. Chem. Soc. Jpn., 47, 1426 (1974).
- R. X. Ewall, D. H. Huchital, *Inorg. Chem.*, 14, 494 (1975).
- 10. A. Haim, N. Sutin, ibid., 15, 476 (1976).
- H. Fisher, G. M. Tom and H. Taube, J. Am. Chem. Soc., 98, 5512 (1976).
- R. J. Marcus, H. Eyring, Chem. Revs., 55, 157 (1955).
- 13. R. A. Marcus, J. Chem. Phys., 24, 996 (1956).
- 14. R. A. Marcus, ibid., 24, 979 (1956).
- 15. D. H. Juchital and J. Lepore, J. Phy. Chem., 17. 1134 (1978).

280

朴裕哲·金聖洙

16. J. Phillips and A. Haim, Inorg. Chem., 19, 1616 (1980).

998 (1973).

- 21. A. I. Vogel, "A Textbook of Quantitative Inorganic Analysis", 4th Ed., Longman, 1979.
- 22. Y. Ch. Park, J. Korean Chem. Soc., 29, 239 (1985).
- 23. Y. Ch. Park, J. Korean Chem. Soc., 31, 37 (1987).
- 24. Y. Ch. Park, Bull. Korean Chem. Soc., 9, 1 (1988).
- 25. R. G. Wilkins, "The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes", Allyn and Bacon, Boston, p.28, 1974.

.

- 17. B. T. Reagor and D. H. Huchital, ibid., 21, 703 (1982).
- 18. F. Miller and R. G. Wilkins, J. Am. Chem. Soc., 92, 2687 (1970).
- 19. Y. Sasaki, K. Endo, A. Nagasawa and K. Saito, Inorg. Chem., 25, 4845 (1986).
- 20. D. H. Huchital and R. J. Hodges, Inorg. Chem., 12,