Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.2.357

Effect of Calcination Temperature of Size Controlled Microstructure of LiNi0.8Co0.15Al0.05O2 Cathode for Rechargeable Lithium Battery  

Park, Tae-Jun (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation)
Lim, Jung-Bin (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation)
Son, Jong-Tae (Department of Nano-Polymer Science & Engineering, Korea National University of Transportation)
Publication Information
Abstract
Size controlled, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathode powders were prepared by co-precipitation method followed by heat treatment at temperatures between 750 and $850^{\circ}C$. The synthesized samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance. The synthesized $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ has a good electrochemical performance with an initial discharge capacity of $190mAhg^{-1}$ and good capacity retention of 100% after 30 cycles at 0.1C ($17mAg^{-1}$). The capacity retention of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ after calcined at $750^{\circ}C$ is better than that at 800 and $850^{\circ}C$ without capacity loss at various high C rates. This is ascribed to the minimized cation disorder, a higher conductivity, and higher lithium ion diffusion coefficient ($D_{Li}$) observed in this material. In the differential scanning calorimetry DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by calcined at high temperature, and this decrease is especially at $850^{\circ}C$. This behavior implies that the high temperature calcinations of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ prevent phase transitions with the release of oxygen.
Keywords
Cathode material; $Li(Ni_{0.8})Co_{0.15}Al_{0.05}O_2$; Calcination temperature; Lithium ion battery; Lithium ion battery Co-precipitation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Albrecht, S.; Kumpers, J.; Kruft, M.; Malcus, S.; Vogler, C.; Wahl, M.; Wohlfahrt-Mehrens, M. J. Power Sources 2003, 119,178.
2 Amriou, T.; Sayede, A.; Khelifa, B.; Matheieu, C.; Aourag, H. J. Power Sources 2004, 130, 213.   DOI
3 Madavi, S.; Subba, G. V.; Subba Rao, G. V.; Chowdari, B. V. R.; Li, S. F. Y. Solid State Ionics 2002, 152, 199.
4 Kim, J.-H.; Park, C.W.; Sun, Y.-K. Solid State Ionics 2003, 164,43.   DOI
5 Periasamy, P.; Kim, H.-S.; Na, S.-H.; Moon, S.-I.; Lee, J.-C. J. Power Sources 2004, 132, 213.   DOI
6 Ohzuku, T.; Yanagawa, T.; Kouguchi, M.; Ueda, A. J. Power Sources 1997, 68, 131.   DOI   ScienceOn
7 Guilmard, M.; Pouillerie, C.; Croguennec, L.; Delmas, C. Solid State Ionics 2003, 160, 39.   DOI
8 Weaving, J. S.; Coowar, F.; Teagel, D. A.; Cullen, J.; Dass, D. A.; Bindin, P.; Green, R.; Mackin, W. J. J. Power Sources 2001, 97,733.
9 Sun, Y. K.; Myung, S. T.; Park, B. C.; Amine, K. Chem. Lett. 2006, 18, 5159.
10 Zhuang, G. V.; Chen, G.; Shim, J.; Song, X. J. Power Sources 2004, 134, 293.   DOI   ScienceOn
11 Matsumoto, K.; Kuzuo, R.; Takeya, K.; Yamanaka, A. J. Power Sources 1999, 82, 558.
12 Ohzuku, T.; Ueda, A.; Nagayama, M. J. Electrochem. Soc. 1993, 140, 1862.   DOI   ScienceOn
13 Wang, G. X.; Zhong, S.; Bradhurst, D. H.; Dou, S. X.; Liu, H. K. J. Power Sources 1998, 76, 141.   DOI   ScienceOn
14 Ohzuku, T.; Ueda, A.; Nagayama, M.; Iwakoshi, Y.; Komori, H. Electrochim. Acta 1993, 38, 1159.   DOI   ScienceOn
15 Aurbach, D.; Gamolsky, K.; Markovsky, B.; Salitra, G.; Gofer, Y.; Heider, U.; Oesten, R.; Schmidt, M. J. Electrochem. Soc. 2000, 147, 1322.   DOI   ScienceOn
16 Reimers, J. R.; Rossen, E.; Jones, C. D.; Dahn, J. R. Solid State Ionic. 1993, 61, 335.   DOI   ScienceOn
17 Guo, H.; Liang, R.; Li, X.; Zhang, X.; Wang, Z.; Peng, W.; Wang, Z. Trans. Nonferrous Met. Soc. China 2007, 17, 1307-1 311.   DOI
18 Oh, S. H.; Lee, S. M.; Cho, W. I.; Cho, B. W. Electrochim. Acta 2006, 51, 3637.   DOI   ScienceOn
19 Xu, C. Q.; Tian, Y. W.; Zhai, Y. C.; Liu, L. Y. Mater. Chem. Phys. 2006, 98, 532.   DOI
20 Chen, C. H.; Liu, J.; Amine, K. J. Power Sources 2001, 96, 321.   DOI   ScienceOn
21 Yi, T.-F.; Xie, Y.; Wu, Q.; Liu, H.; Jiang, L.; Ye, M.; Zhu, R. J. Power Sources 2012, 214, 220.   DOI   ScienceOn
22 Yi, T.-F.; Xie, Y.; Wu, Q.; Zhu, Y.-R.; Zhu, R.-S.; Ye, M.-F. J. Power Sources 2012, 211, 59.   DOI
23 Anderson, A. M.; Abraham, D. P.; Haasch, R.; Maclaren, S.; Liu, J.; Amine, K. J. Electrochem. Soc. 2002, 149, A1358.   DOI   ScienceOn
24 Yamaki, J. I.; Takatsuji, H.; Kawamura, T.; Egsdhira, M. Solid State Ionics 2002, 148, 241.   DOI   ScienceOn
25 Nahma, T.; Kurokawa, H.; Uehara, M.; Takashashi, M.; Nishio, K.; Saito, T. J. Power Sources 1995, 54, 522.   DOI
26 Son, J. T. Bull. Korean Chem. Soc. 2008, 29, 1695-1698.   DOI
27 Li, X.; Kang, F.; Shen, W.; Bai, X. J. Phys. Chem. Solids 2008, 69, 1246-1248.   DOI
28 Ryu, J. H.; Kim, S. B.; Park, Y. J. Bull. Korean Chem. Soc. 2009, 30, 2584-2588.   DOI
29 Dahan, J. R.; Fuller, E. W.; Obrovac, M.; Von Sacken, U. Solid State Ionics 1994, 69, 265.   DOI
30 Fey, G. T. K.; Chen, J. G.; Subramanian, V.; Osaka, T. J. Power Sources 2002, 112, 384.   DOI   ScienceOn