• Title/Summary/Keyword: $Ce-ZrO_2$,Methane

Search Result 14, Processing Time 0.02 seconds

Effect of Ce/Zr Ratios on Ni/CeO2-ZrO2 Catalysts in Steam Reforming of Methane Reaction (Ce/Zr 비율에 따른 Ni/CeO2-ZrO2 촉매가 메탄의 수증기 개질 반응에서 미치는 영향)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.125-131
    • /
    • 2024
  • In this study, synthesized Ni/CexZr1-xO2 catalysts were coated on the surface of honeycomb metalic monoliths to investigate catalytic activity in steam reforming of methane reactions. Supports with varying Ce/Zr ratios were synthesized to observe their behavior in the reforming reaction, and catalysts with Ni contents ranging from 5 wt% to 20 wt% were prepared to analyze the effect of Ni loading contents on catalytic activity. The catalysts were characterized by XRD, BET, TPR, and SEM. The TPR analysis indicated the formation of Ni-Ce-Zr oxide with a strong interaction between the active metal Ni and CeO2-ZrO2 support. The 15 wt% Ni/Ce0.80Zr0.20O2 catalyst exhibited the highest activity and stability in the steam reforming of methane reaction. Catalysts with enhanced activity and stability were synthesized by manufacturing composite materials using excellent oxygen storage and donor properties of CeO2 and the thermal properties of ZrO2.

Influence of Ni/CeO2-ZrO2 Catalysts on Methane Autothermal Reforming (메탄 자열개질 반응에 대한 Ni/CeO2-ZrO2 촉매의 영향)

  • Kang, Min Goo;Lee, Tae Jun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The catalytic behavior of $Ni/Ce_XZr_{(1-X)}O_2$ loaded on the alumina coated honeycomb monolith was studied for the autothermal reforming reaction of methane. Among the catalysts with the different Ce/Zr ratios, the $Ni/Ce_{0.80}Zr_{0.20}O_2$ Catalyst showed the highest conversion of methane. By investigating the effect of Ni content on the $Ni/Ce_{0.80}Zr_{0.20}O_2$ catalysts, the catalyst loaded with 15wt% Ni had the highest activity. Also, $H_2$ yield was increased as $H_2O/CH_4$ ratio increased. Methane conversion was improved as $O_2/CH_4$ ratio was increased, whereas the yield of $H_2$ was decreased. Among the catalysts tested for 30 hours, $Ni(15wt%)/Ce_{0.80}Zr_{0.20}O_2$ showed the excellent conversion(${\geq}99%$) of methane and the stability at the condition of $GHSV=30,000h^{-1}$, feed ratio S/C/O=2/1/0.5 and reaction temperature $800^{\circ}C$.

Autothermal Reforming of Methane using Metallic Monolith Catalyst Coated Ni/CeO2-ZrO2 (금속모노리스에 부착된 Ni/CeO2-ZrO2를 이용한 메탄의 자열개질반응)

  • Lee, Tae Jun;Cho, Kyung Tae;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.663-668
    • /
    • 2007
  • The autothermal reforming reaction of methane was investigated to produce hydrogen with $Ni/CeO_2-ZrO_2$ catalysts. Alumina-coated honeycomb monolith was applied in order to obtain high catalytic activity and stability in autothermal reforming of methane. Metallic monolithic catalyst showed better methane conversion than that of powder type at high reaction temperature. It was confirmed that $H_2O/CH_4/O_2$ ratio was important factor in autothermal reforming reaction. $H_2$ yield was increased as $H_2O/CH_4$ ratio increased. Methane conversion was improved as $O_2/CH_4$ ratio was increased, whereas, the yield of $H_2$ was decreased. The catalytic activity for $Ni/CeO_2-ZrO_2$ catalyst with 0.5 wt% Ru loading was improved at low reaction temperature.

The Effect of La2O3 Loading on the Performance of Ni-La2O3-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane (수증기 개질 반응에서 Ni-La2O3-Ce0.8Zr0.2O2 촉매의 La2O3 함량이 촉매의 성능에 미치는 영향)

  • YOO, SEONG-YEUN;KIM, HAK-MIN;KIM, BEOM-JUN;JANG, WON-JUN;ROH, HYUN-SEOG
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.419-426
    • /
    • 2018
  • $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts with various $La_2O_3$ loading were investigated for hydrogen production from steam reforming of methane (SRM). The $La_2O_3$ loading influenced the physicochemical properties of $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts such as BET surface area, Ni dispersion, Ni size and reducibility. Among the prepared catalysts, $Ni-70La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalyst showed the highest activity and stability at a very high gas hourly space velocity (GHSV) of $932,556h^{-1}$. This is mainly due to high Ni dispersion, small Ni size and high reducibility.

Syngas Production by Partial Oxidation Reaction over Ni-Pd/CeO2-ZrO2 Metallic Monolith Catalysts (Ni-Pd/CeO2-ZrO2 금속모노리스 촉매체를 사용한 부분산화반응에 의한 합성가스 제조)

  • Yang, Jeong Min;Choe, Jeong-Eun;Kim, Yong Jin;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.319-324
    • /
    • 2013
  • The partial oxidation reaction of methane was investigated to produce syngas with $Ni/CeO_2-ZrO_2$, $Ni-Ru/CeO_2-ZrO_2$ and $Ni-Pd/CeO_2-ZrO_2$ catalysts. Honeycomb metallic monolith was applied in order to obtain high catalytic activity and stability in partial oxidation reforming. The catalysts were characterized by XRD and FE-SEM. The influence of various catalysts on syngas production was studied for the feed ratio (O/C), GHSV and temperature. Among the catalysts used in the experiment, the $Ni-Pd/CeO_2-ZrO_2$ catalyst showed the highest activity. The 99% of $CH_4$ conversion was obtained at the condition of T=$900^{\circ}C$, GHSV=10,000 $h^{-1}$ and feed ratio O/C=0.55. It was confirmed that $H_2$ yield increased slightly as O/C ratio increased, while CO yield remained almost constant. Also, $CH_4$ conversion decreased as GHSV increased. It was found that the safe range of GHSV for high $CH_4$ conversion was estimated to be less than 10,000 $h^{-1}$.

The Effect of Calcination Temperature on the Performance of Ni-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane under Severe Conditions (가혹한 조건의 SRM 반응에서 Ni-Ce0.8Zr0.2O2 촉매의 소성온도에 따른 영향)

  • Jang, Won-Jun;Jeong, Dae-Woon;Shim, Jae-Oh;Roh, Hyun-Seog
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.213-218
    • /
    • 2012
  • Steam reforming of methane (SRM) is the primary method to produce hydrogen. Commercial Ni-based catalysts have been optimized for SRM with excess steam ($H_2O/CH_4$ > 2.5) at high temperatures (> $700^{\circ}C$). However, commercial catalysts are not suitable under severe conditions such as stoichiometric steam over methane ratio ($H_2O/CH_4$ = 1.0) and low temperature ($600^{\circ}C$). In this study, 15wt.% Ni catalysts supported on $Ce_{0.8}Zr_{0.2}O_2$ were prepared at various calcination temperatures for SRM at a very high gas hourly space velocity (GHSV) of $621,704h^{-1}$. The calcination temperature was systematically varied to optimize 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst at a $H_2O/CH_4$ ratio of 1.0 and at $600^{\circ}C$. 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst calcined at $500^{\circ}C$ exhibited the highest $CH_4$ conversion as well as stability with time on stream. Also, 15wt.% $Ni-Ce_{0.8}Zr_{0.2}O_2$ catalyst calcined at $500^{\circ}C$ showed the highest $H_2$ yield (58%) and CO yield (21%) among the catalysts. This is due to complex NiO species, which have relatively strong metal to support interaction (SMSI).

Methane Steam Reforming over $Ni/CeO_2-ZrO_2$ loaded on Fe-Cr Alloy Honeycomb Monolith

  • Lee, Jong-Dae;Kang, Min-Gyu;Lee, Tae-Jun;Cho, Kyung-Tae;Kim, Man-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.427-435
    • /
    • 2007
  • 에너지원으로서 수소를 생산하기 위하여 하니컴 구조를 갖는 모노리스에 10 wt% $Ni/CeO_2-ZrO_2$ 촉매를 담지한 후 메탄의 수증기 개질 실험을 수행하였다. 다른 $CeO_2/ZrO_2$ 몰비를 갖는 촉매들 중에서, $Ni/CeO_2-ZrO_2(CeO_2/ZrO_2=4/1)$촉매가 $700-800^{\circ}C$에서 높은 메탄의 전환율을 보여 주었다. 10wt% $Ni/CeO_2-ZrO_2$ 촉매가 담지된 금속 모노리스 촉매체는 높은 열전도도와 비표면적들로 인하여 좋은 촉매 특성을 보여줌을 확인할 수 있었다. 또한, 금속모노리스 촉매체는 반응물에서 과다의 수증기에 의한 수소 수율에서 크게 영향을 받지 않음을 알 수 있었다. $GHSV=30,000h^{-1}$, 반응물 비$(H_2O/CH_4=3.0)$ 반응온도 $800^{\circ}C$에서 금속모노리스 촉매체는 98%이상의 메탄의 전환율을 보여주었다. 생성물 가스에서 $CO_2/CO$의 비는 수증기/메탄의 반응물비가 증가할수록 수성가스화 반응에 의하여 증가됨을 알 수 있었다.

Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives (Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구)

  • Cho, Wonjun;Yu, Hyejin;Mo, Yonggi;Ahn, Whaseung
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.105-113
    • /
    • 2014
  • Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).

Catalytic Behavior of Ni/CexZr1-xO2-Al2O3 Catalysts for Methane Steam Reforming: The CexZr1-xO2 Addition Effect on Water Activation (메탄 습식 개질 반응용 Ni/CexZr1-xO2-Al2O3 촉매의 반응 특성: CexZr1-xO2 첨가에 의한 물 활성화 효과)

  • Haewon Jung;Huy Nguyen-Phu;Mingyan Wang;Sang Yoon Kim;Eun Woo Shin
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.479-486
    • /
    • 2023
  • In this study, we investigated the effect of the CexZr1-xO2 (CZ) addition onto Ni/Al2O3 catalysts on the catalytic performance in methane steam reforming. In the reaction results, the CZ-added Ni/Al2O3 catalyst showed higher CH4 conversion and H2 yield under the same reaction conditions than Ni/Al2O3. From the characterization data, the two catalysts had similar support porosity and Ni dispersion, confirming that the two properties could not determine the catalytic performance. However, the oxygen vacancy over the CZ-added Ni/Al2O3 catalyst induced an efficient steam activation at low reaction temperatures, resulting in an increase in the catalytic activity and H2 yield.