Browse > Article
http://dx.doi.org/10.7316/KHNES.2018.29.5.419

The Effect of La2O3 Loading on the Performance of Ni-La2O3-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane  

YOO, SEONG-YEUN (Department of Environmental Engineering, Yonsei University)
KIM, HAK-MIN (Department of Environmental Engineering, Yonsei University)
KIM, BEOM-JUN (Department of Environmental Engineering, Yonsei University)
JANG, WON-JUN (Department of Environmental Engineering, Yonsei University)
ROH, HYUN-SEOG (Department of Environmental Engineering, Yonsei University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.29, no.5, 2018 , pp. 419-426 More about this Journal
Abstract
$Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts with various $La_2O_3$ loading were investigated for hydrogen production from steam reforming of methane (SRM). The $La_2O_3$ loading influenced the physicochemical properties of $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts such as BET surface area, Ni dispersion, Ni size and reducibility. Among the prepared catalysts, $Ni-70La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalyst showed the highest activity and stability at a very high gas hourly space velocity (GHSV) of $932,556h^{-1}$. This is mainly due to high Ni dispersion, small Ni size and high reducibility.
Keywords
Steam reforming of methane; $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$; $La_2O_3$ loading; Ni dispersion; Ni size; Reducibility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Chanburanasiri, A. M. Ribeiro, A. E. Rodrigues, A. Arpornwichanop, N. Laosiripojana, P. Praserthdam, and S. Assabumrungrat, "Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst", Ind. Eng. Chem. Res., Vol. 50, 2011, pp. 13662-13671.   DOI
2 A. E. Awadallah, D. S. El-Desouki, N. A. K. Aboul-Gheit, A. H. Ibrahim, and A. K. Aboul-Gheit, "Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to $CO_x$-free hydrogen and carbon nanomaterials", Int. J. Hydrogen Energy, Vol. 41, 2016, pp. 16890-16902.   DOI
3 H. Pennemann, R. Bellinghausen, T. Westermann, and L. Mleczko, "Reforming of methane in a multistage microstructured reactor", Chem. Eng. Technol., Vol. 38, 2015, pp. 1883-1893.   DOI
4 W. J. Jang, D. W. Jeong, J. O. Shim, H. M. Kim, H. S. Roh, I. H. Son, and S. J. Lee, "Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application", Appl. Energy, Vol. 173, 2016, pp. 80-91.   DOI
5 H. S. Roh, I. H. Eum, and D. W. Jeong, "Low temperature steam reforming of methane over $Ni-Ce_{(1-x)}Zr_{(x)}O_2$ catalysts under severe conditions", Renewable Energy, Vol. 42, 2012, pp. 212-216.   DOI
6 H. Tian, X. Li, L. Zeng, and J. Gong, "Recent advances on the design of group VIII base-metal catalysts with encapsulated structures", ACS Catal., Vol. 5, 2015, pp. 4959-4977.   DOI
7 S. D. Angeli, F. G. Pilitsis, and A. A. Lemonidou, "Methane steam reforming at low temperature: effect of light alkanes' presence on coke formation", Catal. Today, Vol. 242, 2015, pp. 119-128.   DOI
8 M. Dan, M. Mihet, Z. Tasnadi-Asztalos, A. Imre-Lucaci, G. Katona, and M. D. Lazar, "Hydrogen production by ethanol steam reforming on nickel catalysts: Effect of support modification by $CeO_2$ and $La_2O_3$", Fuel, Vol. 147, 2015, pp. 260-268.   DOI
9 M. Dan, M. Mihet, A. R. Biris, P. Marginean, V. Almasan, and G. Borodi, "Supported nickel catalysts for low temperature methane steam reforming: comparison between metal additives and support modification", React. Kinet. Mech. Catal., Vol. 105, 2012, pp. 173-193.   DOI
10 H. S. Roh and K. W. Jun, "Carbon dioxide reforming of methane over Ni catalysts supported on $Al_2O_3$ modified with $La_2O_3$, MgO, and CaO", Catal. Surv. Asia, Vol. 12, 2008, pp. 239-252.   DOI
11 G. Wu, S. Li, C. Zhang, T. Wang, and J. Gong, "Glycerol steam reforming over perovskite-derived nickel-based catalysts", Appl. Catal. B: Environ., Vol. 144, 2014, pp. 277-285.   DOI
12 J. Gao, Z. Hou, J. Guo, Y. Zhu, and X. Zheng, "Catalytic conversion of methane and $CO_2$ to synthesis gas over a $La_2O_3$-modified $SiO_2$ supported Ni catalyst in fluidized-bed reactor", Catal. Today, Vol. 131, 2008, pp. 278-284.   DOI
13 C. Zhang, S. Li, G. Wu, Z. Huang, Z. Han, T. Wang, and J. Gong, "Steam reforming of ethanol over skeletal Ni-based catalysts: a temperature programmed desorption and kinetic study", AIChE Journal, Vol. 60, 2013, pp. 635-644.
14 X. Yu, F. Zhang, N. Wang, S. Hao, and W. Chu, "Plasmatreated bimetallic Ni-Pt catalysts derived from hydrotalcites for the carbon dioxide reforming of methane", Catal. Lett., Vol. 144, 2014, pp. 293-300.   DOI
15 H. M. Kim, W. J. Jang, S. Y. Yoo, J. O. Shim, K. W. Jeon, H. S. Na, Y. L. Lee, B. H. Jeon, J. W. Bae, and H. S. Roh, "Low temperature steam reforming of methane using metal oxide promoted Ni-$Ce_{0.8}Zr_{0.2}O_2$ catalysts in a compact reformer", Int. J. Hydrogen Energy, Vol. 43, 2018, pp. 262-270.   DOI
16 K. Wang, X. Li, S. Ji, X. Shi, and J. J. Tang, "Effect of $Ce_xZr_{1-x}O_2$ Promoter on Ni-Based SBA-15 Catalyst for Steam Reforming of Methane", Energy and Fuels, Vol. 23, 2009, pp. 25-31.   DOI
17 M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka, and A. K. Datye, "The Role of Pore Size and Structure on the Thermal Stability of Gold Nanoparticles within Mesoporous Silica", J. Phys. Chem. B, Vol. 109, 2005, pp. 2873-2880.   DOI
18 W. J. Jang, D. W. Jeong, J. O. Shim, H. S. Roh, I. H. Son, and S. J. Lee, "$H_2$ and CO production over a stable Ni-MgO-$Ce_{0.8}Zr_{0.2}O_2$ catalyst from $CO_2$ reforming of $CH_4$", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 4508-4512.   DOI
19 D. W. Jeong, W. J. Jang, J. O. Shim, H. S. Roh, I. H. Son, and S. J. Lee, "The effect of preparation method on the catalytic performance over superior MgO-promoted Ni-$Ce_{0.8}Zr_{0.2}O_2$ catalyst for $CO_2$ reforming of $CH_4$", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 13649-13654.   DOI
20 L. Pino, A. Vita, F. Cipitii, M. Lagana, and V. Recupero, "Hydrogen production by methane tri-reforming process over Ni-ceria catalysts: effect of La-doping", Appl. Catal. B: Environ., Vol. 104, 2011, pp. 64-73.   DOI
21 C. Batiot-Dupeyrat, G. Valderrama, A. Meneses, F. Martinez, J. Barrault, and J. M. Tatibouet, "Pulse study of $CO_2$ reforming of methane over $LaNiO_3$", Appl. Catal. A: Gen., Vol. 248, 2003, pp. 143-151.   DOI
22 J. E. Min, Y. J. Lee, H. G. Park, C. Zhang, and K. W. Jun, "Carbon dioxide reforming of methane on Ni-MgO-$Al_2O_3$ catalysts prepared by sol-gel method: Effects of Mg/Al ratios", J. Indus. Eng. Chem., Vol. 26, 2015, pp. 375-383.   DOI
23 X. Zhao and G. Lu, "Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming", Int. J. Hydrogen Energy, Vol. 41, 2016, pp. 3349-3362.   DOI
24 R. M. Navarro, M. C. Alvarez-Galvan, F. Rosa, and J. L. G. Fierro, "Hydrogen production by oxidative reforming of hexadecane over Ni and Pt catalysts supported on Ce/La-doped $Al_2O_3$", Appl. Catal. A: Gen., Vol. 297, 2006, pp. 60-72.   DOI
25 P. Ferreira-Aparicio, M. J. Benito, and J. L. Sanz, "New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers", Catal. Rev., Vol. 47, 2005, pp. 491-588.   DOI
26 D. W. Jeong, J. O. Shim, W. J. Jang, and H. S. Roh, "A Study on Pt-Na/$CeO_2$ Catalysts for Single Stage Water Gas Shift Reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 2, 2012, pp. 111-116.   DOI
27 D. J. Seo, W. L. Yoon, K. S. Kang, and J. W. Kim, "Patent Trend for Hydrogen Production Technology by Steam Reforming of Natural Gas", Trans. of the Korean Hydrogen and New Energy Society, Vol. 18, No. 4, 2007, pp. 464-480.