DOI QR코드

DOI QR Code

Experimental Study of Hydrogen and Syngas Production over Ni/Ce-ZrO2/Al2O3 Catalysts with Additives

Ni/Ce-ZrO2/Al2O3 촉매의 첨가제에 따른 수소 및 합성가스 생성에 대한 실험적 연구

  • Cho, Wonjun (DME Technology Research Center, KOGAS) ;
  • Yu, Hyejin (DME Technology Research Center, KOGAS) ;
  • Mo, Yonggi (DME Technology Research Center, KOGAS) ;
  • Ahn, Whaseung (Department of Chemistry and Chemical Engineering, Inha University)
  • 조원준 (한국가스공사 연구개발원(KOGAS) DME기술연구센터) ;
  • 유혜진 (한국가스공사 연구개발원(KOGAS) DME기술연구센터) ;
  • 모용기 (한국가스공사 연구개발원(KOGAS) DME기술연구센터) ;
  • 안화승 (인하대학교 화학공학과)
  • Received : 2014.03.07
  • Accepted : 2014.04.30
  • Published : 2014.04.30

Abstract

Performance tests on $Ni/Ce-ZrO_2/Al_2O_3$ catalysts with additives (MgO, $La_2O_3$) were investigated in the combined reforming processes (SCR, ATR, TRM) in order to produce hydrogen and carbon monoxide (it is called "syngas".). The catalyst characterization was conducted using the BET surface analyzer, X-ray diffraction (XRD), SEM, TPR and TGA. The combined reforming process was developed to adjust the syngas ratio depending on the synthetic fuel (methanol, DME and GTL) manufacturing processes. Ni-based catalysts supported on alumina has been generally recommended as a combined reforming reaction catalyst. It was found that both free NiO and complexed NiO species were responsible for the catalytic activity in the combined reforming of methane conversion, and the $Ce-ZrO_2$ binary support employed had improved the oxygen storage capacity and thermal stability. The additives, MgO and $La_2O_3$, also seemed to play an important role to prevent the formation of the carbon deposition over the catalysts. The experimental results were compared with the equilibrium data using a commercial simulation tool (PRO/II).

Keywords

References

  1. H. Arakawa, M. Aresta, and J. N. Armor, "Catalysis Research of Relevance to Carbon Management: Progress, Challenges, and Opportunities", Chem. Rev., Vol. 101, 2001, pp. 953-996. https://doi.org/10.1021/cr000018s
  2. A. M. De Groote, and G. F. Froment, "Simulation of the catalytic partial oxidation of methane to synthesis gas", Applied Catalysis A: General, Vol. 138, 1996, pp. 245-264. https://doi.org/10.1016/0926-860X(95)00299-5
  3. D. L. Hoang, and S. H. Chan, "Modeling of a catalytic autothermal methane reformer for fuel cell applications", Applied Catalysis A: General, Vol. 268, 2004, pp. 207-216. https://doi.org/10.1016/j.apcata.2004.03.056
  4. W. J. Cho, T. Y. Song, A. Mitsos, J. T. Mckinnon, G. H. Ko, J. E. Tolsma, D. Denholm, and T. S. Park, "Optimal design and operation of a natural gas tri-reforming reactor for DME synthesis", Catalysis Today, Vol. 139, 2009, pp. 261-267. https://doi.org/10.1016/j.cattod.2008.04.051
  5. C. S. Song, "Global challenges and strategies for control, conversion and utilization of $CO_2$ for sustainable development involving energy, catalysis, adsorption and chemical processing", Catalysis Today, Vol. 115, 2006, pp. 2-32. https://doi.org/10.1016/j.cattod.2006.02.029
  6. J. T. Chung, W. J. Cho, Y. S. Baek, and C. H. Lee, "Optimization of KOGAS DME process from demonstration Long-term test", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, 2012, pp. 559-571. https://doi.org/10.7316/KHNES.2012.23.5.559
  7. H. S. Roh, H. S. Potdar, and K. W. Jun, "Carbon dioxide reforming of methane over co- precipitated $Ni-CeO_2,\;Ni-ZrO_2\;and\;Ni-Ce-ZrO_2$ catalysts", Catalysis Today, Vol. 93-95, 2004, pp. 39-44. https://doi.org/10.1016/j.cattod.2004.05.012
  8. K. Y. Koo, H. S. Roh, Y. T. Seo, D. J. Seo, W. L. Yoon, and S. B. Park, "A highly effective and table nano-sized Ni/$MgO-Al_2O_3$ catalyst for gas to liquid (GTL) process", International Journal of Hydrogen Energy, Vol. 33, 2008, pp. 2036-2043. https://doi.org/10.1016/j.ijhydene.2008.02.029
  9. H. S. Roh, K. W. Jun, and S. E. Park, "Methane-reforming reactions over $Ni/Ce-ZrO_2/{\theta}-Al_2O_3$ catalysts", Applied Catalysis A: General, Vol. 251, 2003, pp. 275-283. https://doi.org/10.1016/S0926-860X(03)00359-4
  10. S. H. Lee, W. I. Cho, W. S. Ju, B. H. Cho, Y. C. Lee, and Y. S. Baek, "Tri-reforming of $CH_4$ using $CO_2$ for production of synthesis gas to dimethyl ether", Catalysis Today, Vol. 87, 2003, pp. 133-137 https://doi.org/10.1016/j.cattod.2003.10.005
  11. S. Wang, and G. Q. M. Lu, "$CO_2$ reforming of methane on Ni catalysts : Effects of the support phase and preparation technique", Applied Catalysis B: Environmental, Vol. 16, 1998, pp. 269-277. https://doi.org/10.1016/S0926-3373(97)00083-0
  12. K. Y. Koo, H. S. Roh, Y. T. Seo, D. J. Seo, W. L. Yoon, and S. B. Park, "Coke study on MgO-promoted Ni/$Al_2O_3$ catalyst in combined $H_2O$ and $CO_2$ reforming of methane for gas to liquid (GTL) process", Applied Catalysis A : General, Vol. 340, 2008, pp. 183-190. https://doi.org/10.1016/j.apcata.2008.02.009
  13. S. D. Robertson, B. D. McNicol, J. H. de Baas, S. C. Kloet, and J. W. Jenkins, "Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction", Journal of Catalysis, Vol. 37, 1975, pp. 424-431. https://doi.org/10.1016/0021-9517(75)90179-7
  14. H. S. Roh, K. Y. Koo, and W. L. Yoon, "Combined reforming of methane over co-precipitated $Ni-CeO_2,\;Ni-ZrO_2\;and\;Ni-Ce_{0.8}Zr_{0.2}O_2$ catalysts to produce synthesis gas for gas to liquid (GTL) process", Catalysis Today, Vol. 146, 2009, pp. 71-75. https://doi.org/10.1016/j.cattod.2009.01.001
  15. R. Martinez, E. Romero, C. Guimon, and R. bilbao, "$CO_2$ reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum", Applied Catalysis A: General, Vol. 274, 2004, pp. 139-149. https://doi.org/10.1016/j.apcata.2004.06.017
  16. H. S. Roh, H. S. Potdar, K. W. Jun, J. W. Kim, and Y. S. Oh, "Carbon dioxde reforming of methane over Ni incorporated into Ce-$ZrO_2$ catalysts", Applied Catalysis A: General, Vol. 276, 2004, pp. 231-239. https://doi.org/10.1016/j.apcata.2004.08.009
  17. A. I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, and T. Hayakawa, "Dry reforming of methane over catalysts derived from nickelcontaining Mg-Al layered double hydroxides", Journal of Catalysis, Vol. 213, 2003, pp. 191-203. https://doi.org/10.1016/S0021-9517(02)00047-7
  18. M. Dan, M. D. Lazar, V. Rednic, and V. Almasan "Methane steam reforming over Ni/$Al_2O_3$ promoted by $CeO_2$ and $La_2O_3$", Chem. Rev., Vol. 56, 2011, pp. 643-649.
  19. W. Tao, H. Cheng, W. Yao, X. Lu, Q. Zhu, G. Li, and Z. Zhou, "Syngas production by $CO_2$ reforming of coke oven gas over Ni/$La_2O_3-ZrO_2$ catalysts", International Journal of Hydrogen Energy, 2014, http://dx.doi.org/10.1016/j.ijhydene. 2014.02.029.
  20. D. L. Trimm, "Catalysts for the control of coking during steam reforming", Catalysis Today, Vol. 49, 1999, pp. 3-10. https://doi.org/10.1016/S0920-5861(98)00401-5
  21. Y. J. Lee, S. I. Hong, and D. J. Moon, "Studies on the steam and $CO_2$ reforming of methane for GTL-FPSO applications", Catalysis Today, Vol. 174, 2011, pp. 31-36. https://doi.org/10.1016/j.cattod.2011.04.031

Cited by

  1. The Effect of Y at Ni-YSZ Catalysts for the Application to the Process of Methane Chemical-Looping Reforming vol.26, pp.6, 2015, https://doi.org/10.7316/KHNES.2015.26.6.516