Autothermal Reforming of Methane using Metallic Monolith Catalyst Coated Ni/CeO2-ZrO2

금속모노리스에 부착된 Ni/CeO2-ZrO2를 이용한 메탄의 자열개질반응

  • Lee, Tae Jun (School of Chemical Engineering, Chungbuk National University) ;
  • Cho, Kyung Tae (School of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (School of Chemical Engineering, Chungbuk National University)
  • Received : 2007.07.09
  • Accepted : 2007.09.04
  • Published : 2007.12.31

Abstract

The autothermal reforming reaction of methane was investigated to produce hydrogen with $Ni/CeO_2-ZrO_2$ catalysts. Alumina-coated honeycomb monolith was applied in order to obtain high catalytic activity and stability in autothermal reforming of methane. Metallic monolithic catalyst showed better methane conversion than that of powder type at high reaction temperature. It was confirmed that $H_2O/CH_4/O_2$ ratio was important factor in autothermal reforming reaction. $H_2$ yield was increased as $H_2O/CH_4$ ratio increased. Methane conversion was improved as $O_2/CH_4$ ratio was increased, whereas, the yield of $H_2$ was decreased. The catalytic activity for $Ni/CeO_2-ZrO_2$ catalyst with 0.5 wt% Ru loading was improved at low reaction temperature.

$Ni/CeO_2-ZrO_2$ 촉매를 이용하여 수소 제조를 위한 메탄의 자열개질반응 특성을 조사하였다. 메탄의 자열개질반응에서 촉매의 활성과 안정성을 향상시키기 위해 알루미나가 코팅된 금속 모노리스를 사용하였으며, 금속모노리스 촉매체는 높은 반응온도에서 분말형태의 촉매에 비해 높은 메탄 전환율을 나타내었다. 자열개질반응에 있어서 $H_2O/CH_4/O_2$의 비는 전환율에 영향을 미치는 중요한 변수임을 알 수 있었다. $H_2O/CH_4$ 비가 증가함에 따라 수소 수율은 증가되고, 또한 $O_2/CH_4$ 비가 증가함에 따라 메탄 전환율은 증가하지만 수소 수율은 감소하였다. $Ni/CeO_2-ZrO_2$ 촉매에 0.5 wt%의 귀금속 촉매인 Ru 첨가로 인해 낮은 반응온도에서 촉매 활성이 향상되었다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. Kreuter, W. and Hofmann, H., 'Electrolysis: The Important Energy Transdormer in a World of Sustainable Energy,' Int. J. Hydrogen Energy, 29(8), 661-666(1998)
  2. Ahmed, S. and Krumpelt, M., 'Hydrogen from Hydrocarbon Fuels for Fuel Cells,' Int. J. Hydrogen Energy 26(4), 291-301(2001) https://doi.org/10.1016/S0360-3199(00)00097-5
  3. Acres, G. J. K., 'Recent Advances in Fuel Cell Technology and Its Applications,' J. Power Sources 100(1-2), 60-66 (2001) https://doi.org/10.1016/S0378-7753(01)00879-5
  4. Heinzel, A., Vogel, B. and Hubner, P., 'Reforming of Natural Gas-hydrogen Generation for Small Scale Stationary Fuel Cell Systems,' J. Power Sources 105(4), 202-207(2002) https://doi.org/10.1016/S0378-7753(01)00940-5
  5. Recupero, V., Pino, L., Leonardo, R. D., Lagana, M. and Maggio, G., 'Hydrogen Generator, Via Catalytic Partial Oxidation of Methane for Fuel Cells,' J. Power Sources 71(1-2), 208-214(1998) https://doi.org/10.1016/S0378-7753(97)02794-8
  6. Diskin, A. M. and Ormerod, R. M., 'Partial Oxidation of Methane over Supported Nickel Catalysts,' Studies Surface Science Catalyst 130(4), 3519-3524(2000) https://doi.org/10.1016/S0167-2991(00)80568-6
  7. Rostrup-Nielsen, J. R. Sehested, J. Norskov, J. K., 'Hydrogen and Synthesis Gas by Steam- and $CO_{2}$ Reforming,' Advances in Catalysis 47, 65-139(2002) https://doi.org/10.1016/S0360-0564(02)47006-X
  8. Zhang, J. and Wang, Y., 'Characterization of Alumina-supported Ni and Ni-Pd Catalysts for Partial Oxidation and Steam Reforming of Hydrocarbons,' Runyu Ma and Diyong Wu, Applied Catalysis A 243(2), 251-259(2003) https://doi.org/10.1016/S0926-860X(02)00561-6
  9. Borowiecki, T., Goebiowski, A. and Stasiska, B., 'Effects of Small $MoO_{3}$ Additions on the Properties of Nickel Catalysts for the Steam Reforming of Hydrocarbons', Applied Catalysis A 153(1-2), 141-156(1997) https://doi.org/10.1016/S0926-860X(96)00356-0
  10. Borowiecki, T., Giecko, G. and Panczyk, M., 'Effects of Small $MoO_{3}$ Additions on the Properties of Nickel Catalysts for the Steam Reforming of Hydrocarbons: II. Ni-Mo/$Al_{2}O_{3}$ Catalysts in Reforming, Hydrogenolysis and Cracking of n-butane,' Applied Catalysis A 230(1-2), 85-97(2002) https://doi.org/10.1016/S0926-860X(01)00951-6
  11. Xu, S., Wang, X., 'Highly Active and Coking Resistant Ni/$CeO_{2}-ZrO_{2}$ Catalyst for Partial Oxidation of Methane,' Fuel 84(5), 563-567(2005) https://doi.org/10.1016/j.fuel.2004.10.008
  12. Wang, W., Stagg-Williams, S. M., Noronha, F. B., Mattos, L. V., Passos, F. B., 'Partial Oxidation and Combined Reforming of Methane on Ce-promoted Catalysts,' Catal. Today 98(4), 553-563(2004) https://doi.org/10.1016/j.cattod.2004.09.009
  13. Cheng, Z., Wu, Q., Li, J. and Zhu, Q., 'Effects of Promoters and Preparation Procedures on Reforming of Methane with Carbon Dioxide over Ni/$Al_{2}O_{3}$ Catalyst,' Catal. Today 30(1-3), 147-155(1996) https://doi.org/10.1016/S0920-5861(96)90026-7
  14. Suzuki, T., Iwanami, H.-I. and Yoshinari, T., 'Steam Reforming of Kerosene on Ru/$Al_{2}O_{3}$ Catalyst to Yield Hydrogen,' Int. J Hydrogen Energy 25(2), 119-126(2000) https://doi.org/10.1016/S0360-3199(99)00014-2
  15. Cavallaro, S., Chiodo, V., Freni, S., Mondello, N. and Frusteri, F., 'Performance of Rh/$Al_{2}O_{3}$ Catalyst in the Steam Reforming of Ethanol: $H_{2}$ Production for MCFC,' Applied Catalysis A 249(1), 119-128(2003) https://doi.org/10.1016/S0926-860X(03)00189-3
  16. Dias, A. C. and Assaf, J. M., 'Autothermal Reforming of Methane over Ni/${\gamma}-Al_{2}O_{3}$ Catalysts: the Enhancement Effect of Small Quantities of Noble Metals,' J. Power Sources 130(1-2), 106-110(2004) https://doi.org/10.1016/j.jpowsour.2003.11.057