• Title/Summary/Keyword: $Ca^{++}$ antagonist

Search Result 174, Processing Time 0.021 seconds

Inhibition Mechanism of Endothelin-l-induced $Ca^{2+}$ Mobilization of Antimelanogenic Ingredient: 1,2-Ο-Diferulylglycerol

  • Lee, K. M.;Park, J. B.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.73-86
    • /
    • 2003
  • Endothelins secreted from keratinocytes are intrinsic madiators for human melanocytes in UVB-induced pigmentation. Antimelanogenic ingredient, 1,2-Ο-diferulylglycerol(SM709) isolated from bamboo extract inhibited the melanin synthesis of Bl6F10 melanoma cells by 62%. To understand the cellular mechanism of antimelanogenic activity of SM709 in human melanocytes, the effects of SM709 on the ET-l-induced $Ca^{2+}$ mobilization were investigated. ET-l receptors in human melanocytes were characterized by using specific antagonist and found that ET-l increased intracellular $Ca^{2+}$ by activating ET-B receptor. SM709 completely blocked the ET-l-induced intracellular $Ca^{2+}$ increase and its inhibitory effect showed dose- and time- dependent manners. To investigate the role of SM709 on intracellular $Ca^{2+}$ store, when the $Ca^{2+}$ store was partially depleted by thapsigargin; a specific inhibitor of ER-type $Ca^{2+}$-ATPase, caffeine-induced $Ca^{2+}$ mobilization did not changed in the presence or absence of SM709, suggesting that SM709 has no effect on the $Ca^{2+}$ store. It is known that LPA receptor and P$_2$ receptor are linked to InsP$_3$ second messenger system. When these receptors in melanocytes were activated by LPA and ATP, the intracellular $Ca^{2+}$ signaling was observed even in the presence of SM709. From the above results, it can be suggested that SM709 has an antimelanogenic activity by antagonizing the ET-B receptor, resulting in subsequent intracellular $Ca^{2+}$ signaling, in UV induced pigmentation.nduced pigmentation.

  • PDF

Inhibitory Effects of Dihydrexidine on Catecholamine Release from the Rat Adrenal Medulla

  • Lee, Jae-Hwang;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.32-42
    • /
    • 2009
  • The purpose of the present study was to examine the effect of dihydrexidine, a full $D_1$ receptor agonist, on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland, and to establish its mechanism of action. Dihydrexidine (10-100 ${\mu}M$), perfused into an adrenal vein for 60 min, relatively produced dose- and time-dependent inhibition in the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Dihydrexidine itself did fail to affect basal CA output. Also, in adrenal glands loaded with dihydrexidine (30 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$), an activator of L-type $Ca^{2+}$ channels, cyclopiazonic acid (10 ${\mu}M$), an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, and veratridine, an activator of voltage-dependent $Na+$ channels (10 ${\mu}M$), were also markedly inhibited, respectively. However, in the simultaneous presence of dihydrexidine (30 ${\mu}M$) and R (+)-SCH23390 (a selective antagonist of $D_1$ receptor, 3 ${\mu}M$), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory responses by dihydrexidinetreatment alone. In conclusion, these experimental results suggest that dihydrexidine significantly inhibits the CA secretion evoked by cholinergic stimulation (both nicotinic and muscarinic receptors) and membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of dihydrexidine may be mediated by inhibiting influx of both $Ca^{2+}$ and $Na^+$ into the cytoplasm as well as by suppression of $Ca^{2+}$ release from cytoplasmic calcium store through activation of dopaminergic $D_1$ receptors located on the rat adrenomedullary chromaffin cells.

Synthesis of 1,4-Dihydropyridine Carboxylic Acids (III)

  • Suh, Jung-Jin;Hong, You-Hwa;Bae, Myn
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.359-363
    • /
    • 1991
  • 2,6-Dimethyl-4-(3'-nitrophenyl)1,4-dihydropyridine-3,5-dicarboxylic acid 5-(2'-cyanoethyl) ester 10a reacted with chloromethyl methylsulfide to give 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-methylthiomethyl 5-(2'-cyanoethyl) ester 11a in 88.1% yield. The synthesis of 2,6-dimethyl-4-(3'-nitrophenyl)-1,4-dihydropyridine-3,5-dicrboxylic acid 3-methylthiomethyl ester 2a was achieved in 83% yield by alkaline hydrolysis of compound 11a in aqueous EtOH.

  • PDF

Involvement of D2 Receptor on Dopamine-induced Action in Interstitial Cells of Cajal from Mouse Colonic Intestine

  • Zuoa, Dong Chuan;Shahia, Pawan Kumar;Choia, Seok;Jun, Jae-Yeoul;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.218-226
    • /
    • 2012
  • Dopamine is an enteric neurotransmitter that regulates gastrointestinal motility. This study was done to investigate whether dopamine modulates spontaneous pacemaker activity in cultured interstitial cells of Cajal (ICCs) from mouse using whole cell patch clamp technique, RT-PCR and live $Ca^{2+}$ imaging analysis. ICCs generate pacemaker inward currents at a holding potential of -70 mV and generate pacemaker potentials in current-clamp mode. Dopamine did not change the frequency and amplitude of pacemaker activity in small intestinal ICCs. On the contrary dopamine reduced the frequency and amplitude of pacemaker activity in large intestinal ICCs. RT-PCR analysis revealed that Dopamine2 and 4-receptors are expressed in c-Kit positive ICCs. Dopamine2 and 4 receptor agonists inhibited pacemaker activity in large intestinal ICCs mimicked those of dopamine. Domperidone, dopamine2 receptor antagonist, increased the frequency of pacemaker activity of large intestinal ICCs. In $Ca^{2+}$-imaging, dopamine inhibited spontaneous intracellular $Ca^{2+}$ oscillations of ICCs. These results suggest that dopamine can regulate gastrointestinal motility through modulating pacemaker activity of large intestinal ICCs and dopamine effects on ICCs are mediated by dopamine2 receptor and intracellular $Ca^{2+}$ modulation.

The Involvement of Protein Kinase C and Tyrosine Kinase in Vanadate-induced Contraction

  • Sim, Sang-Soo;Kim, Chang-Jong
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.315-319
    • /
    • 1998
  • Gastric smooth muscle of cats was used to investigate the involvement of protein kinase in vanadate-induced contraction. Vanadate caused a contraction of cat gastric smooth muscle in a dose-dependent manner. Vanadate-induced contraction was totally inhibited by 2 mM EGTA and 1.5 mM $LACI_3$ and significantly inhibited by $10\mu$M verapamil and $1\mu$M nifedipine, suggesting that vanadate-induced contraction is dependent on the extracellular $Ca^{2+}$ concentration, and the influx of extracellular $Ca^{2+}$ was mediated through voltage-dependent $Ca^{2+}$ channel. Both protein kinase C inhibitor and tyrosine kinase inhibitor significantly inhibited the vanadate-induced contraction and the combined inhibitory effect of two protein kinase inhibitors was greater than that of each one. But calmodulin antagonists did not have any influence on the vanadate-induced contraction. On the other hand, both forskolin ($1\mu$M) and sodium nitroprusside ($1\mu$M) significantly inhibited vanadate-induced contraction. Therefore, these results suggest that both protein kinase C and tyrosino kinase are involved in the vanadate-induced contraction which required the influx of extracellular $Ca^{2+}$ in cat gastric smooth muscle, and that the contractile mechanism of vanadate may be different from that of agonist binding to its specific receptor.

  • PDF

Naltrexone Inhibits Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Medulla

  • Yu, Byung-Sik;Min, Seon-Young;Seo, Yoo-Seok;Choi, Cheol-Hee;Lee, Eun-Hwa;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.223-230
    • /
    • 2005
  • The purpose of the present study was to examine the effect of naltrexone, an opioid antagonist, on secretion of catecholamines (CA) evoked by cholinergic nicotinic stimulation and membrane-depolarization from the isolated perfused rat adrenal gland and to establish the mechanism of its action. Naltrexone $(3{\times}10^{-6}M)$ perfused into an adrenal vein for 60 min produced time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M)$ , high $K^+$ $(5.6{\times}10^{-2}M)$ , DMPP ($10^{-4}$ M) and McN-A-343 $(10^{-4}M)$ . Naltrexone itself did also fail to affect basal CA output. In adrenal glands loaded with naltrexone $(3{\times}10^{-6}M)$ , the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$, were also inhibited. However, in the presence of met-enkephalin $(5{\times}10^{-6}M)$ , a well-known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Collectively, these experimental results demonstrate that naltrexone inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that this inhibitory effect of naltrexone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

SM709, Ingredient of Antimelanogenic Bamboo Extract, Blocks Endothelin-1-induced $[Ca^{2+}]_i$ Increase in Human Melanocytes

  • Kim, Shin-Hee;Lee, Ki-Mu;Kim, Hyo-Shin;Lee, Gyu-Seung;Jeon, Byeong-Hwa;Kim, Kwang-Jin;Park, Jin-Bong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.311-316
    • /
    • 2003
  • Endothelins secreted from keratinocytes are intrinsic mitogens and melanogens of human melanocytes in UVB-induced hyperpigmentation. To elucidate the cellular mechanism of antimelanogenic activity of bamboo extract, the effects of three ingredients of bamboo extract on endothelin 1 (ET-1)-induced $Ca^{2+}$ mobilization were investigated in cultured human melanocytes. ET-1 receptors in human melanocytes were characterized by using specific antagonist, and ET-1 was found to increase intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) by activating ET-B receptor. SM709 (1,2-O-diferulyl-glycerol), an ingredient of bamboo extract, inhibited ET-1-induced $[Ca^{2+}]_i$ increase in a concentration- and time-dependent manner, although another ingredients SM707 and SM708 had no effect on ET-1-induced $[Ca^{2+}]_i$ increase in human melanocytes. SM709 ($100{\mu}M$), however, did not affect $[Ca^{2+}]_i$ increase induced by thapsigargin and caffeine, suggesting that SM709 has no effect on the $Ca^{2+}$ store in melanocytes. Furthermore, SM709 did not affect $[Ca^{2+}]_i$ increase induced by LPA or ATP, known as G protein-mediated PLC activators like ET-1. Taken together, it is suggested that SM709 antagonizes ET-1-induced transmembrane signaling through ET-B receptor, which maybe a possible underlying mechanism of antimelanogenic activity of bamboo extract in human melanocytes.

Influence of Naloxone on Catecholamine Release Evoked by Nicotinic Receptor Stimulation in the Isolated Rat Adrenal Gland

  • Kim Ok-Min;Lim Geon-Han;Lim Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.699-708
    • /
    • 2005
  • The present study was designed to investigate the effect of naloxone, a well known opioid antagonist, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal glands, and to establish its mechanism of action. Naloxone ($10^{-6}\~10^{-5}$ M), perfused into an adrenal vein for 60 min, produced dose- and time-dependent inhibition of CA secretory responses evoked by ACh ($5.32\times10^{-3}$ M), high K+ ($5.6\times10^{-2}$ M), DMPP ($10^{-4}$ M) and McN-A-343 ($10^{-4}$ M). Naloxone itself also failed to affect the basal CA output. In adrenal glands loaded with naloxone ($3\times10^{-6}$ M), the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase, were also inhibited. In the presence of met-enkephalin ($5\times10^{-6}$ M), a well known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Taken together, these results suggest that naloxone greatly inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that these inhibitory effects of naloxone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.

Relationship Between Histamine Release and Ca$^{2+}$ Mobilizaton in RBL 2H3 Mast Cells (RBL 2H3 비만세포에서 히스타민 유리와 칼슘과의 관계)

  • Park, Sung-Hun;Kim, Soo-Jeong;Kim, Jung-Min;Park, Ju-Hyun;Choi, Bang-Shil;Lee, Ji-Yun;Choi, Mi-Yeong;Sim, Sang-Soo
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.63-67
    • /
    • 2007
  • To investigate the relation between extracellular Ca$^{2+}$ and histamine release, we observed agonist-induced histamine release from RBL 2H3 mast cells in the presence or absence of extracellular Ca$^{2+}$ concentration. Histamine release induced by melittin and thapsigargin were greater in the presence of extracellular Ca$^{2+}$ than in the absence of extracellular Ca$^{2+}$. Econazole-induced histamine release had nothing to do with extracellular Ca$^{2+}$, whereas arachidonic acid-induced histamine release increased in the absence of extracellular Ca$^{2+}$. Calmodulin antagonists did not affect melittin-induced histamine release but they may potentiate arachidonic acid-induced histamine release. These data suggest that arachidonic acid-induced histamine release may be mediated via Ca$^{2+}$-independent pathway and may be potentiated by the block of Ca$^{2+}$-dependent pathway.

Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

  • Joo, Yeon Ah;Chung, Hyunjin;Yoon, Sohyun;Park, Jong Il;Lee, Ji Eun;Myung, Cheol Hwan;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.529-535
    • /
    • 2016
  • Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-$NH_2$ and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-$NH_2$-induced PAR2 activation resulting in decreased mobilization of intracellular $Ca^{2+}$ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-$NH_2$ and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-${\alpha}$) and IFN-${\gamma}$ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-$NH_2$-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-$NH_2$ downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-$NH_2$ in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis.