Browse > Article

Naltrexone Inhibits Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Medulla  

Yu, Byung-Sik (Departments of Anesthesiology, College of Medicine, Chosun University)
Min, Seon-Young (Departments of Pharmacology, College of Medicine, Chosun University)
Seo, Yoo-Seok (Departments of Pharmacology, College of Medicine, Chosun University)
Choi, Cheol-Hee (Departments of Pharmacology, College of Medicine, Chosun University)
Lee, Eun-Hwa (Department of Medical and Pharmaceuticals, Chodang University)
Lim, Dong-Yoon (Departments of Pharmacology, College of Medicine, Chosun University)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.9, no.4, 2005 , pp. 223-230 More about this Journal
Abstract
The purpose of the present study was to examine the effect of naltrexone, an opioid antagonist, on secretion of catecholamines (CA) evoked by cholinergic nicotinic stimulation and membrane-depolarization from the isolated perfused rat adrenal gland and to establish the mechanism of its action. Naltrexone $(3{\times}10^{-6}M)$ perfused into an adrenal vein for 60 min produced time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M)$ , high $K^+$ $(5.6{\times}10^{-2}M)$ , DMPP ($10^{-4}$ M) and McN-A-343 $(10^{-4}M)$ . Naltrexone itself did also fail to affect basal CA output. In adrenal glands loaded with naltrexone $(3{\times}10^{-6}M)$ , the CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$, were also inhibited. However, in the presence of met-enkephalin $(5{\times}10^{-6}M)$ , a well-known opioid agonist, the CA secretory responses evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly inhibited. Collectively, these experimental results demonstrate that naltrexone inhibits greatly CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as that by membrane depolarization. It seems that this inhibitory effect of naltrexone does not involve opioid receptors, but might be mediated by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself.
Keywords
Naltrexone; Opioid receptors; Secretion of catecholamines; Adrenal gland; Nicotinic receptors;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Albillos A, Carbone E, Gandia L, Garcia AG, Pollo A. Opioid inhibition of $Ca^{2+}$ channel subtypes in bovine chromaffin cells: selectivity of action and voltage-dependence. Eur J Neurosci 8: 1561-1570, 1996.   DOI   ScienceOn
2 Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429-434, 1989   DOI   ScienceOn
3 Kitamura G, Ohta T, Kai T, Kon Y, Ito S. Inhibitory effects of opioids on voltage-dependent Ca ($^{2+}$) channels and catecholamine secretion in cultured porcine adrenal chromaffin cells. Brain Res 942: 11-22, 2002   DOI   PUBMED   ScienceOn
4 Kleppisch T, Ahnert-Hilger G, Gollasch M, Spicher K, Hescheler J, Schultz G, Rosenthal W. Inhibition of voltage-dependent $Ca^{2+}$ channels via $\alpha$2-adrenergic and opioid receptors in cultured bovine adrenal chromaffin cells. Pflugers Arch 421: 131-137, 1992   DOI   ScienceOn
5 Kumakura K, Karoum F, Guidotti A, Costa E. Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells. Nature 283: 489-492, 1980   DOI   ScienceOn
6 Ritchie AK. Catecholamine secretion in a rat pheochromocytoma cell line: Two pathways for calcium entry. J Physiol 286: 541- 561, 1979   DOI   PUBMED
7 Twitchell WA, Rane SG. Opioid peptide modulation of Neuron -dependent $K^{+}$ and voltage-activated $Ca^{2+}$ currents in bovine adrenal chromaffin cells. Neuron 10: 701-709, 1993   DOI   ScienceOn
8 Wakade AR. Studies on secretion of catecholamines evoked by ACh or transmural stimulation of the rat adrenal gland. J Physiol 313: 463-480, 1981   PUBMED
9 Winkler H, Westhead E. The molecular organization of adrenal chromaffin granules. Neuroscience 5: 1803-1823, 1980   DOI   PUBMED   ScienceOn
10 Anton AH, Sayre DF. A study of the factors affecting the aluminum oxidetrihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360-375, 1962   PUBMED
11 Artalejo CR, Adams ME, Fox AP. Three types of $Ca^{2+}$ channel trigger secretion with different efficacies in chromaffin cells. Nature 367: 72-76, 1994   DOI   ScienceOn
12 Dean DM, Lemaire S, Livett BG. Evidence that inhibition of nicotine- mediated catecholamine secretion from adrenal chromaffin cells by enkephalin, beta-endorphin, dynorphin (1-13), and opiates is not mediated via specific opiate receptors. J Neurochem 38: 606-614, 1982   DOI   PUBMED
13 Dermitzaki E, Gravanis A, Venihaki M, Stournaras C, Margioris AN. Opioids suppress basal and nicotine-induced catecholamine secretion via a stabilizing effect on actin filaments. Endocrinology 142: 2022-2031, 2001   DOI   ScienceOn
14 Lemaire S, Day R, Dumont M, Chouinard L, Calvert R. Dynorphin and enkephalins in adrenal paraneurons. Opiates in adrenal medulla. Can J Physiol Pharmacol 62: 484-492, 1984   DOI   PUBMED   ScienceOn
15 Jarry H, Dietrich M, Barthel A, Giesler A, Wuttke W. In vivo demonstration of a paracrine, inhibitory action of Met-enkephalin on adrenomedullary catecholamine release in the rat. Endocrinology 125: 624-629, 1989   DOI   ScienceOn
16 Lim DY, Lee JJ, Choi CH. Effect of opioid on nicotinic receptormediated catecholamine secretion in the rat adrenal gland. Korean J Pharmacol 28: 181-190, 1992
17 Owen PJ, Marriott DB, Boarder MR. Evidence for a dihydropyridine- sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells. Br J Pharmacol 97: 133-138, 1989   DOI   PUBMED   ScienceOn
18 DougIas WW, Kanno T, Sampson SR. Effects of acetylcholine and other medullary secretagogues and antagonists on the membrane potential of adrenal chromaffin cells: An analysis employing techniques of tissue culture. J Physiol 188: 107-120, 1967   DOI   PUBMED
19 O'Farrell N, Zigas J, Marley PD. Effect of N- and L-type calcium channel antagonists and (t)-Bay-K-8644 on nerve-induced catecholamine secretion from bovine perfused adrenal glands. Br J Pharmacol 121: 381-388, 1997   DOI   PUBMED   ScienceOn
20 Challis RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083-1086, 1991   DOI   PUBMED
21 Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on Ca2+ binding and $Ca^{2+}$ permeability. Biochem Pharmacol 38: 3995- 4003, 1989   DOI   ScienceOn
22 Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$ -ATPase of sarcoplasimc reticulum. J Biol Chem 264: 17816-17823, 1989   PUBMED
23 Boarder MR, Marriott D, Adams M. Stimulus secretion coupling in cultured chromaffin cells, dependency on external sodium and on dihydropyridine-sensitive calcium channels. Biochem Pharmacol 36: 163-167, 1987   DOI   ScienceOn
24 Cena V, Nicholas G, Sanchez-Garcia P, Kirpekar SM, Garcia AG. Pharmacological dissection of receptor-associated and voltagesensitive ionic channels involved in catecholamine release. Neuroscience 10: 1455-1462, 1983   DOI   ScienceOn
25 Hammer R, Giachetti A. Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci 31: 2992- 2998, 1982
26 Lopez MG, Fonteriz R, Gandia L, De la Fuente M, Villarroya M, Garcia-Sancho J, Garcia AG. The nicotinic ACh receptor of the bovine chromaffin cell, a new target for dihydropyridines. Eur J Pharmacol Molec Biol 247: 199-207, 1993   DOI   ScienceOn
27 Bunn SJ, Dunkley PR. Opioid inhibition of nicotine-induced 45Ca2 (+)-uptake into cultured bovine adrenal medullary cells. Biochem Pharmacol 41: 715-722, 1991   DOI   ScienceOn
28 Douglas WW, Kanno T, Sampson SR. Influence of the ionic environment on the membrane potential of adrenal cells and on the depolarizing effect of acetylcholine. J Physiol 191: 107-121, 1967   DOI   PUBMED
29 Marley PD, Livett BG. Effects of opioid compounds on desensitization of the nicotinic response of isolated bovine adrenal chromaffin cells. Biochem Pharmacol 36: 2937-2944, 1987   DOI   ScienceOn
30 Saiani L, Guidotti A. Opiate receptor-mediated inhibition of catecholamine release in primary cultures of bovine adrenal chromaffin cells. J Neurochem 39: 1669-1676, 1982   DOI   PUBMED
31 Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$ -pump, reduces $Ca^{2+}$ -dependent $K^{+}$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992   DOI   PUBMED   ScienceOn
32 Mannelli M, Maggi M, DeFeo ML, Boscaro M, Opocher G, Mantero F, Baldi E, Giusti G. Opioid modulation of normal and pathological human chromaffin tissue. J Clin Endocrinol Metab 62: 577-582, 1986   DOI   PUBMED
33 Tome AR, Izaguirre V, Rosario LM, Cena V, Gonzalez-Garcia C. Naloxone inhibits nicotine-induced receptor current and catecholamine secretion in bovine chromaffin cells. Brain Res 903: 62-65, 2001   DOI   PUBMED   ScienceOn
34 Marley PD, Mitchelhill KI, Livett BG. Effects of opioid peptides containing the sequence of $Met^{5}$-enkephalin or $Leu^{5}$-enkephalin on nicotineinduced secretion from bovine adrenal chromaffin cells. J Neurochem 46: 1-11, 1986   DOI   PUBMED
35 Uyama Y, Imaizumi Y, Watanabe M. Effects of cyclopiazonic acid, a novel $Ca^{2+}$ -ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 106: 208-214, 1992   DOI   PUBMED   ScienceOn
36 Venihaki M, Ain K, Gravanis A, Margioris AN. KAT45, a noradrenergic human pheochromocytoma cell line producing corticotropin- releasing hormone. Endocrinology 139: 713-722, 1998   DOI   ScienceOn
37 Epple A, Nibbio B, Spector S, Brinn JE. Endogenous codeine: autocrine regulator of catecholamine release from chromaffin cells. Life Sci 54: 695-702, 1994   DOI   ScienceOn
38 Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15: 115-125, 1992   DOI   ScienceOn
39 Venihaki M, Gravanis A, Margioris AN. Opioids inhibit dopamine secretion from PC12 rat pheochromocytoma cells in a naloxonereversible manner. Life Sci 58: 75-82, 1996   DOI   PUBMED   ScienceOn
40 Livett BG, Dean DM, Whelan LG, Udenfriend S, Rossier J. Corelease of enkephalin and catecholamines from cultured adrenal chromaffin cells. Nature 289: 317-319, 1981   DOI   ScienceOn
41 Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69-71, 1984.   DOI   ScienceOn
42 Barron BA, Hexum TD. Modulation of bovine adrenal gland secretion by etorphine and diprenorphine. Life Sci 38: 935-940, 1986   DOI   ScienceOn
43 Dendorfer A, Dominiak P. Characterisation of bradykinin receptors mediating catecholamine release in PC12 cells. Naunyn-Schmiedeberg's Arch Pharmacol 351: 274-281, 1995
44 Reisine T, Pasternak G. Opioid analgesics and antagonists. In: Hardman JG, Gilman AG, Limbird LE ed, Goodman and Gilman's The Pharmacological Basis of Therapeutics. McGraw-Hill, New York, p 521-556, 1996
45 Conway EL, Brown MJ, Dollery CT. Studies on the pharmacology of central opioid-induced increases in plasma catecholamines in conscious rats. Neuropharmacol 23: 1291-1296, 1984   DOI   ScienceOn
46 Livett BG, Boksa P. Receptors and receptor modulation in cultured chromaffin cells. Can J Physiol Pharmacol 62: 467-476, 1984   DOI   PUBMED   ScienceOn
47 Albillos A, Gandia L, Michelena P, Gilabert JA, del Valle M, Carbone E, Garcia AG. The mechanism of calcium channel facilitation in bovine chromaffin cells. J Physiol 494: 687-695, 1996   DOI   PUBMED
48 Ilno M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 94: 363-383, 1989   DOI   PUBMED   ScienceOn
49 Kimura T, Katoh M, Satoh S. Inhibition by opioid agonists and enhancement by antagonists of the release of catecholamines from the dog adrenal gland in response to splanchnic nerve stimulation: Evidence for the functional role of opioid receptors. J Pharmacol Exp Ther 244: 1098-1102, 1988   PUBMED
50 Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd ed. Speringer-Verlag, New York, p 132, 1987