DOI QR코드

DOI QR Code

Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

  • Joo, Yeon Ah (Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Chung, Hyunjin (Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Yoon, Sohyun (Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Park, Jong Il (Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Lee, Ji Eun (Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Myung, Cheol Hwan (Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Hwang, Jae Sung (Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University)
  • Received : 2016.01.18
  • Accepted : 2016.02.29
  • Published : 2016.09.01

Abstract

Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-$NH_2$ and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-$NH_2$-induced PAR2 activation resulting in decreased mobilization of intracellular $Ca^{2+}$ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-$NH_2$ and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-${\alpha}$) and IFN-${\gamma}$ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-$NH_2$-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-$NH_2$ downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-$NH_2$ in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis.

Keywords

References

  1. Bohm, S. K., Kong, W., Bromme, D., Smeekens, S. P., Anderson, D. C., Connolly, A., Kahn. M,, Nelken, N. A., Coughlin, S. R., Payan, D. G. and Bunnett, N. W. (1996) Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem. J. 314, 1009-1016. https://doi.org/10.1042/bj3141009
  2. Briot, A., Deraison, C., Lacroix, M., Bonnart, C., Robin, A., Besson, C., Dubus, P. and Hovnanian, A. (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med. 206, 1135-1147. https://doi.org/10.1084/jem.20082242
  3. Cork, M. J., Robinson, D. A., Vasilopoulos, Y., Ferguson, A., Moustafa, M., MacGowan, A., Duff, G. W., Ward, S. J. and Tazi-Ahnini, R. (2006) New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J. Allergy Clin. Immunol. 118, 3-21. https://doi.org/10.1016/j.jaci.2006.04.042
  4. Derian, C. K., Eckardt, A. J. and Andrade-Gordon, P. (1997) Differential regulation of human keratinocyte growth and differentiation by a novel family of protease-activated receptors. Cell Growth Differ. 8, 743-749.
  5. Eckert, R. L., Crish, J. F. and Robinson, N. A. (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol. Rev. 77, 397-424. https://doi.org/10.1152/physrev.1997.77.2.397
  6. Elias, P. M. (1983) Epidermal lipids, barrier function, and desquamation. J. Invest. Dermatol. 80, 44s-49s.
  7. Elias, P. M. (2005) Stratum corneum defensive functions: an integrated view. J. Invest. Dermatol. 125, 183-200. https://doi.org/10.1111/j.0022-202X.2005.23668.x
  8. Elias, P. M. and Choi, E. H. (2005) Interactions among stratum corneum defensive functions. Exp. Dermatol. 14, 719-726. https://doi.org/10.1111/j.1600-0625.2005.00363.x
  9. Elias, P. M., Hatano, Y. and Williams, M. L. (2008) Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J. Allergy Clin. Immunol. 121, 1337-1343. https://doi.org/10.1016/j.jaci.2008.01.022
  10. Frateschi, S., Camerer, E., Crisante, G., Rieser, S., Membrez, M., Charles, R. P., Beermann, F., Stehle, J. C., Breiden, B., Sandhoff, K., Rotman, S., Haftek, M., Wilson, A., Ryser, S., Steinhoff, M., Coughlin, S. R. and Hummler, E. (2011) PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/ Prss8 expression in mouse skin. Nat. Commun. 2, 161. https://doi.org/10.1038/ncomms1162
  11. Gissurarson, S. R., Sigurdsson, S. B., Wagner, H. and Ingolfsdottir, K. (1997) Effect of lobaric acid on cysteinyl-leukotriene formation and contractile activity of guinea pig taenia coli. J. Pharmacol. Exp. Ther. 280, 770-773.
  12. Guo, D., Zhou, H., Wu, Y., Zhou, F., Xu, G., Wen, H. and Zhang, X. (2011) Involvement of ERK1/2/NF-kappaB signal transduction pathway in TF/FVIIa/PAR2-induced proliferation and migration of colon cancer cell SW620. Tumour Biol. 32, 921-930. https://doi.org/10.1007/s13277-011-0194-1
  13. Hachem, J. P., Houben, E., Crumrine, D., Man, M. Q., Schurer, N., Roelandt, T., Choi, E. H., Uchida, Y., Brown, B. E., Feingold, K. R. and Elias, P. M. (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J. Invest. Dermatol. 126, 2074-2086. https://doi.org/10.1038/sj.jid.5700351
  14. Hou, L., Kapas, S., Cruchley, A. T., Macey, M. G., Harriott, P., Chinni, C., Stone, S. R. and Howells, G. L. (1998) Immunolocalization of protease-activated receptor-2 in skin: receptor activation stimulates interleukin-8 secretion by keratinocytes in vitro. Immunology 94, 356-362. https://doi.org/10.1046/j.1365-2567.1998.00528.x
  15. Jeong, S. K., Kim, H. J., Youm, J. K., Ahn, S. K., Choi, E. H., Sohn, M. H., Kim, K. E., Hong, J. H., Shin, D. M. and Lee, S. H. (2008) Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J. Invest. Dermatol. 128, 1930-1939. https://doi.org/10.1038/jid.2008.13
  16. Kawagoe, J., Takizawa, T., Matsumoto, J., Tamiya, M., Meek, S. E., Smith, A. J., Hunter, G. D., Plevin, R., Saito, N., Kanke, T., Fujii, M. and Wada, Y. (2002) Effect of protease-activated receptor-2 deficiency on allergic dermatitis in the mouse ear. Jpn. J. Pharmacol. 88, 77-84. https://doi.org/10.1254/jjp.88.77
  17. Kim, H. Y., Goo, J. H., Joo, Y. A., Lee, H. Y., Lee, S. M., Oh, C. T., Ahn, S. M., Kim, N. H. and Hwang, J. S. (2012) Impact on inflammation and recovery of skin barrier by nordihydroguaiaretic Acid as a protease-activated receptor 2 antagonist. Biomol. Ther. (Seoul) 20, 463-469. https://doi.org/10.4062/biomolther.2012.20.5.463
  18. Komatsu, N., Saijoh, K., Kuk, C., Liu, A. C., Khan, S., Shirasaki, F., Takehara, K. and Diamandis, E. P. (2007) Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp. Dermatol. 16, 513-519. https://doi.org/10.1111/j.1600-0625.2007.00562.x
  19. Lee, S. E., Jeong, S. K. and Lee, S. H. (2010) Protease and proteaseactivated receptor-2 signaling in the pathogenesis of atopic dermatitis. Yonsei Med. J. 51, 808-822. https://doi.org/10.3349/ymj.2010.51.6.808
  20. Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I. and Hamid, Q. A. (2004) New insights into atopic dermatitis. J. Clin. Invest. 113, 651-657. https://doi.org/10.1172/JCI21060
  21. Macfarlane, S. R. and Plevin, R. (2003) Intracellular signalling by the G-protein coupled proteinase-activated receptor (PAR) family. Drug Dev. Res. 59, 367-374. https://doi.org/10.1002/ddr.10305
  22. Madison, K. C. (2003) Barrier function of the skin: "la raison d'etre" of the epidermis. J. Invest. Dermatol. 121, 231-241. https://doi.org/10.1046/j.1523-1747.2003.12359.x
  23. Morita, E., Takahashi, H., Niihara, H., Dekio, I., Sumikawa, Y., Murakami, Y. and Matsunaka, H. (2010) Stratum corneum TARC level is a new indicator of lesional skin inflammation in atopic dermatitis. Allergy 65, 1166-1172.
  24. Morita, H., Tsuchiya, T., Kishibe, K., Noya, S., Shiro, M. and Hirasawa, Y. (2009) Antimitotic activity of lobaric acid and a new benzofuran, sakisacaulon A from Stereocaulon sasakii. Bioorg. Med. Chem. Lett. 19, 3679-3681. https://doi.org/10.1016/j.bmcl.2009.03.170
  25. Oldham, W. M. and Hamm, H. E. (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60-71. https://doi.org/10.1038/nrm2299
  26. Spergel, J. M. and Paller, A. S. (2003) Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 112, S118-S127. https://doi.org/10.1016/j.jaci.2003.09.033
  27. Su, M. J., Bikle, D. D., Mancianti, M. L. and Pillai, S. (1994) 1,25-Dihydroxyvitamin D3 potentiates the keratinocyte response to calcium. J. Biol. Chem. 269, 14723-14729.
  28. Yuspa, S. H., Kilkenny, A. E., Steinert, P. M. and Roop, D. R. (1989) Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J. Cell Biol. 109, 1207-1217. https://doi.org/10.1083/jcb.109.3.1207

Cited by

  1. Proteinase-Activated Receptor-2 Modulates Ve-Cadherin Expression to Affect Human Vascular Endothelial Barrier Function 2017, https://doi.org/10.1002/jcb.26123
  2. Broad overview of engineering of functional nanosystems for skin delivery 2017, https://doi.org/10.1016/j.ijpharm.2017.07.078