• Title/Summary/Keyword: $C_f/SiC$ 복합재

Search Result 17, Processing Time 0.026 seconds

Study on Improvement of Mechanical Property, Oxidation and Erosion Resistance of SiC Matrix Ceramic Composites Reinforced by Hybrid Fabric Composed of SiC and Carbon Fiber (탄화규소섬유와 탄소섬유 하이브리드 직물을 강화재로 한 SiC 매트릭스 세라믹복합재의 기계적물성, 산화 및 삭마 저항성 개선 연구)

  • Yoon, Byungil;Kim, Myeongju;Kim, Jaesung;Kwon, Hyangjoo;Youn, Sungtae;Kim, Jungil
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.148-157
    • /
    • 2019
  • In this study, $C_f/SiC$, $SiC_f/SiC$ and $C_f-SiC_f/SiC$ ceramic composites reinforcing carbon fiber, SiC fiber and hybrid fiber were fabricated by hybrid TGCVI and PIP process. After the thermal shock cycle, 3-point bending and Oxy-Acetylene torch test, their mechanical behavior, oxidation and erosion resistance were evaluated. The $C_f/SiC$ composite showed a decrease in mechanical property along with increasing temperature, a pseudo-ductile fracture mode and a large quantity of erosion. The $SiC_f/SiC$ composite exhibited stronger mechanical property and lower erosion rate compared to the $C_f/SiC$, but brittle fracture mode. On the other hand, hybrid type of $C_f-SiC_f/SiC$ composite gave the best mechanical property, more ductile failure mode than the $SiC_f/SiC$, and lower erosion rate than the $C_f/SiC$. During the Oxy-Acetylene torch test, the $SiO_2$ formed by reaction of the SiC matrix with oxygen prevented further oxidation or erosion of the fibers for $C_f-SiC_f/SiC$ and $SiC_f/SiC$ composites particularly. In conclusion, if a hybrid composite with low porosity is prepared, this material is expected to have high applicability as a high temperature thermo-structural composite under high temperature oxidation atmosphere by improving low mechanical property due to the oxidation of $C_f/SiC$ and brittle fracture mode of $SiC_f/SiC$ composite.

Characteristics of Elastic Wave Generated by Wear and Friction of SiCf/SiC Composites (SiCf/SiC 복합재의 마모 및 마찰에 의해 발생된 탄성파 특성)

  • Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The wear characteristics of $SiC_f$/SiC composites were evaluated according to the alignment direction of the fibers, and the elastic wave-generated friction was detected and analyzed in wearing. The friction coefficient and wear loss were similar in the longitudinal and the transverse direction of the fibers. However, these values were lower in the vertical direction of the fibers because of the brittle nature of the fiber. The friction coefficient and the wear loss were directly proportional to each other. The dominant frequencies were 58.6 kHz for monolithic SiC and 117.2 and 136.7 kHz for $SiC_f$/SiC composites, respectively.

Densification of Cf/SiC Composite Using PIP with Adding of Cyclohexene (Cyclohexene을 첨가한 PIP 공정 사용 Cf/SiC 복합재의 고밀도화)

  • Bae, Jin-Cheol;Cho, Kwang-Youn;Kim, Jun-Il;Im, Dong-Won;Park, Jong-Kyu;Lee, Man-Young;Lee, Jae-Yeol
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.322-327
    • /
    • 2013
  • Carbon fiber-reinforced SiC matrix composites have good oxidation resistance and thermal shock resistance. These properties have allowed the composites to be applied to high-temperature structures. In this study, $C_f/SiC$ composites were fabricated via precursor infiltration and pyrolysis (PIP) process, including liquid phase infiltration and chemical vapor curing using cyclohexene. The final $C_f/SiC$ composites, which have gone through the PIP process five times, showed a density of $1.79g/cm^3$, as compared to a density of $0.43g/cm^3$ for pre-densified bare carbon fiber preform. As for the oxidation resistance characteristics, the weight of $C_f/SiC$ composite was maintained at 81% at $1400^{\circ}C$ in air for 6 hours. Chemical vapor curing (CVC) using cyclohexene has shown to be an effective method to achieve high densification, leading to increased oxidation resistance.

Enhanced Oxidation Resistance of LSI-Cf/SiC Composite by De-siliconization (탈규소화를 통한 LSI-Cf/SiC 복합재료의 내산화성 향상)

  • Jung Hwan Song;Jung Hoon Kong;Seung Yong Lee;Young Il Son;Do Kyung Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.21-27
    • /
    • 2022
  • Cf/SiC composites have low density, high mechanical strength, and good thermal stability, making them promising materials for high-temperature applications such as rocket propulsion and military fields. However, the remaining Si deteriorates physical and thermal properties. In this paper, the de-siliconization was introduced as a method to remove the Si of the Cf/SiC composite fabricated through Liquid Silicon Infiltration(LSI) process. The stability of composite has been tested under an oxyacetylene torch flame for up to 5 minutes. The oxidized surface and cross section of specimens were characterized by 3D scanning, X-ray diffraction(XRD), Optical microscope(OM) and Scanning electron microscope(SEM).

Characterizations on the Thermal Insulation of SiC Coated Carbon-Carbon Composites (탄화규소로 코팅된 탄소-탄소 복합재료의 단열 특성)

  • Seo, Hyoung-IL;Lim, Byung-Joo;Sihn, Ihn Cheol;Bae, Soobin;Lee, Hyung-Ik;Choi, Kyoon;Lee, Kee Sung
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • This study investigates the characterization on the thermal insulation properties of silicon carbide coating on the Cf-C composites. The silicon carbide coatings by chemical vapor deposition on the C/C composites are prepared to evaluate thermal resistance. Firstly, we perform the basic insulation test by thermal shock at 1350℃ in air on the C/C composite and SiC-coated C/C composite. We also performed the burner tests on the surface of the composites at high temperatures such as 1700 and 2000℃, and the weight change after burner tests are measured. The damages on the surface of C/C composite and SiC-coated composite are observed. As a result, the SiC coating is beneficial to protect the C/C composite from high temperature even though damages such as defoliation, crack and voids are observed during burner test at 2000℃.

Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites (SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가)

  • Chae, Yeon-Hwa;Moon, Heung Soo;Kim, Seyoung;Woo, Sang Kuk;Park, Ji-Yeon;Lee, Kee Sung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.84-93
    • /
    • 2017
  • This study investigates thermal and mechanical characterization of environmental barrier coating on the $SiC_f-SiC$ composites. The spherical environmental barrier coating (EBC) powders are prepared using a spray drying process for flowing easily during coating process. The powders consisting of mullite and 12 wt% of Ytterbium silicate are air plasma sprayed on the Si bondcoat on the LSI SiC fiber reinforced SiC composite substrate for protecting the composites from oxidation and water vapor reaction. We vary the process parameter of spray distance during air plasma spray of powders, 100, 120 and 140 mm. After that, we performed the thermal durability tests by thermal annealing test at $1100^{\circ}C$ for 100hr and thermal shock test from $1200^{\circ}C$ for 3000 cycles. As a result, the interface delamination of EBC never occur during thermal durability tests while stable cracks are prominent on the coating layer. The crack density and crack length depend on the spray distance during coating. The post indentation test indicates thermal tests influence on the indentation load-displacement mechanical behavior.

A Study on Hot Extrusion Characteristics of Particulate Reinforced Aluminium Matrix Composite. (입자분산강화 알루미늄 복합재의 압출가공특성에 관한 연구)

  • Gwon, Hyeok-Cheon;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.953-959
    • /
    • 1995
  • It was investigated that reinforced species, billet condition and extrusion variation in Al 6061 composite material effected on extrusion process of particulate reinforced composite material. The strength of composite material with reinforcement species revealed SiC$\sub$w/> A1$_2$O$\sub$3f/ > A1$_2$O$\sub$3f/ > A1$_2$O$\sub$3f/ orderly. K$\sub$w/ increased as volute fraction increased in all composite material. The composite materials reinforced by A1$_2$ $O_3$required the larger pressure in hot extrusion process than those by SiC$\sub$p/ at all condition. Extrusion process tended to decrease as the semi-angle of extrusion dies increased because larger contact area caused larger shear friction. Extrusion temperature went up about 50$^{\circ}C$ in low elevated deformation temperature. In extrusion temperature above 500$^{\circ}C$, severe tearing occurred on extrusion surface. More reinforcement in volume fraction, more hot tearing.

  • PDF

Analysis of Temperature dependent Thermal Expansion Behavior of $\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ Composites ($\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ 복합재료의 온도에 따른 열팽창 특성 해석)

  • 정성욱;남현욱;정창규;한경섭
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • This study developed SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites for electronic packaging to which reinforcements were added with the volume fractions of 49%, 56% and 63% by the squeeze casting method. 0.8 wt. % of the inorganic binder as well as the A1$_2$O$_3$ fiber and SiC Particles with the volume fraction of 1:10 were added to the composites, which were produced in the newly designed mold. For the produced SiC/Al composites, the CTEs (coefficients of thermal expansion) were measured from 30 to 300 and compared with the FEM numerical simulation to analyze the temperature dependent properties. The experiment showed the CTEs of SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites that were intermediate values of those of Rule of Mixture and Turner's Model. The CTEs were close to Turner's Model in the room temperature and approached the Rule of Mixture as the temperature increases. These properties analyzed from the difference of the average stress acting between the matrix and the reinforcements proposed in this study.

The Extrusion Characteristics in Hor Extrusion of $SiC_p/6061 Al$ Composite ($SiC_p/6061 Al$ 복합재료의 압출가공에 있어서 압출특성)

  • Jo, Hyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.945-951
    • /
    • 1994
  • In order to elucidate the extrusion characteristics of $SiC_{p}$/6061 Al composite, defomation resistance, $K_{w}$ was determined using the empirical formula suggested by Watanabe et al, and also extrusion pressure was measured using the extrusion press with a capacity of 350 ton. The $K_{w}$ which are propotional to extrudability, was increased with increasing volume fraction of reinforcement, $SiC_{p}$, but decreased with increasing the particle size. The peaks of maximum extrusion pressure in curves of extrusion force vs ram stroke were changed sharply with decreasing the particle size. The elevated extrustion temperature resulted in the decreased $K_{w}$ and extrusion pressure, but caused the surface tearing of extrusion composite bars. The results showed that extrudability of the composite billets is depend on the extrusion conditions as well as the characteristics of reinforcement, $SiC_{p}$.

  • PDF

Fabrication Process and Impact Characteristic Analysis of Metal Matrix Composite for Electronic Packaging Application (전자패키징용 금속복합재료의 제조공정 해석 및 충격특성평가)

  • 정성욱;정창규;남현욱;한경섭
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2002
  • This study developed fabrication process of $SiC_p/Al$ metal matrix composites as electronic packaging materials by squeeze casting method. The $SiC_p$ preform were fabricated in newly designed preform mold using about 0.8 % of inorganic binder(SiO$_2$) and 5 vol.% of $Al_2O_3$fiber. To infiltrate the molten metal into the preform, fabrication condition such as the temperature and the pressure were selected. Applying the fabrication conditions, heat transfer analysis were preformed using finite element method and thus analyzed the temperature distribution and cooling characteristic during the squeeze casting. For the fabricated composites, impact toughness and thermal expansion coefficient were measured. The metal matrix composites developed in this study have 0.2~0.3 J impact toughness, $8~10 ppm/^{\circ}C$ thermal expansion coefficient and $2.9~3.0g/cm^3$density which is appropriate properties for electronic packaging application.