• Title/Summary/Keyword: $C_3H_6$

Search Result 11,488, Processing Time 0.041 seconds

Palladium(II) p-Tolylamide and Reaction with CO2 to Generate a Carbamato Derivative

  • Seul, Jung-Min;Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3745-3748
    • /
    • 2010
  • Pd(II) p-tolylamide Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)(NH($C_6H_4Me$-p)) (1) was metathetically prepared by the reaction of Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)Cl with NaNH($C_6H_4Me$-p). Treatment of 1 with carbon dioxide affords the palladium(II) carbamate Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)(OC(O)NH($C_6H_4Me$-p)) (2), quantitatively. Complex 2 reacts with HX (X = Cl, OTf) to give Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)X, $NH_2$(p-Tol) and $CO_2$. Reaction of the palladium(II) carbamate with MeI produced Pd(2,6-$(Ph_2PCH_2)_2C_6H_3$)I along with generation of methyl N-tolylcarbamate MeOC(O)NH($C_6H_4Me$-p), exclusively.

Heteroepitaxial growth of 3C-SiC on 6H-SiC substrates by thermal chemi-cal vapor deposition (화학기상증착법에 의한 6H-SiC 기판상의 3C-SiC 이종박막 성장)

  • 장성주;박주훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.290-296
    • /
    • 2003
  • The heteroepitaxial growth of crystalline 3C-SiC on 6H-SiC substrates using high purity silane ($SiH_4$) and prophane ($C_3H^8$) was carried out by thermal chemical vapor deposition, and growth characteristics were investigated in this study. In case that the flow ratio of C/Si and flow rate of $H_2$ were 4.0 and 5.0 slm, respectively, the growth rate of epilayers was about 1.8 $\mu$m/h at growth temperature of $1200^{\circ}C$. The Nomarski surface morphology, X-ray diffraction, Raman spectroscopy, and photoluninescence of grown epilayers were measured to investigate the crystallinity. In this study, the high quality of crystalline 3C-SiC heteropitaxial layers was observed at growth temperature of above $1150^{\circ}C$.

Chiral [Iminophosphoranyl]ferrocenes: Synthesis, Coordination Chemistry, and Catalytic Application

  • Co, Thanh Thien;Shim, Sang-Chul;Cho, Chan-Sik;Kim, Dong-Uk;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1359-1365
    • /
    • 2005
  • A series of new chiral [iminophosphoranyl]ferrocenes, {${\eta}^5-C_5H_4-(PPh_2=N-2,6-R_2-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-PPh^2-2-CH(Me)NMe_2$} (1: R = Me, $^iPr$), {${\eta}^5{-C_5H_4-(PPh_2=N-2,6-R_2}^1-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-(PPh_2=N-2,6-R_2-C_6H_3)-2-CH(Me)R_2$} (2: $R^1\;=\;Me,\;^iPr;\;R^2\;=\;NMe_2$, OMe), and $({\eta}^5-C_5H_5)Fe${${\eta}^5-C_5H_4-1-PR_2-2-CH(Me)N=PPh_3$} (3:R = Ph, $C_6H_{11}$) have been prepared from the reaction of [1,1'-diphenylphosphino-2-(N,N-dimethylamino) ethyl]ferrocene with arylazides (1 & 2) and the reaction of phosphine dichlorides ($R_3PCl_{2}$) with [1,1'-diphenylphosphino-2-aminoethyl]ferrocene (3), respectively. They form palladium complexes of the type $[Pd(C_3H_5)(L)]BF_4$ (4-6: L = 1-3), where the ligand (L) adopts an ${\eta}^2-N,N\;(2)\;or\;{\eta}^2$-P,N (3) as expected. In the case of 1, a potential terdentate, an ${\eta}^2$-P,N mode is realized with the exclusion of the –=NAr group from the coordination sphere. Complexes 4-6 were employed as catalysts for allylic alkylation of 1,3-diphenylallyl acetate leading to an almost stoichiometric product yield with modest enantiomeric excess (up to 74% ee). Rh(I)-complexes incorporating 1-3 were also prepared in situ for allylic alkylation of cinnamyl acetate as a probe for both regio- and enantioselectivities of the reaction. The reaction exhibited high regiocontrol in favor of a linear achiral isomer regardless of the ligand employed.

Growth characteristics of single-crystalline 6H-SiC homoepitaxial layers grown by a thermal CVD (화학기상증착법으로 성장시킨 단결정 6H-SiC 동종박막의 성장 특성)

  • 장성주;설운학
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single- crystalline 6H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 6H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented ($3.5^{\circ}$tilt) substrates from the (0001) basal plane in the <110> direction with the Si-face side of the wafer. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, transmittance spectra, Raman spectroscopy, XRD, Photoluninescence (PL) and transmission electron microscopy (TEM) were utilized. The best quality of 6H-SiC homoepitaxial layers was observed in conditions of growth temperature $1500^{\circ}C$ and C/Si flow ratio 2.0 of $C_3H_8$ 0.2 sccm & $SiH_4$ 0.3 sccm.

  • PDF

Crystallinity and electrical properties of 6H-SiC wafers (6H-SiC wafer의 결정성 및 전기적 특성)

  • 김화목;임창성;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.393-399
    • /
    • 1997
  • H-SiC single crystals were successfully grown by the sublimation method and the optimum growth conditions were established. The grown SiC crystals were about 33 mm in diameter and 11 mm in length. The micropipe density of the polished SiC wafers was 400/$\textrm{cm}^2$, and the planar defect density was 50/$\textrm{cm}^2$. Raman spectroscopy and DCXRD analysis were used to examine the crystallinity of Acheson seeds and the 6H-SiC wafers. As a result, the crystallinity of the 6H-SiC wafers was better than that of Acheson seeds. For examination of the electrical properties of the undopped 6H-SiC wafers Hall measurements were applied. According to the measurements the carrier concentration was estimated to be $3.91{\times}10^{15}/\textrm {cm}^3$ and doping type of the undopped. 6H-SiC wafers was n-type.

  • PDF

Synthesis and Structures of $(NH_4)_{10}[Ni(H_2O)_5]_4[V_2P_2BO_{12}]_6{\cdot}nH_2O$ and $(NH_4)_{3.5}(C_3H_{12}N_2)_{3.5}[Ni(H_2O)_6]_{1.25}{[Ni(H_2O)_5]_2[V_2P_2BO_{12}]_6{\cdot}nH_2O$

  • Yun, Ho-Seop;Do, Jung-Hwan
    • Korean Journal of Crystallography
    • /
    • v.15 no.1
    • /
    • pp.35-39
    • /
    • 2004
  • Two new nickel vanadium borophosphate cluster compounds, $(NH_4)_{10}[Ni(H_2O)_5]_4[V_2P_2BO_{12}]_6{\cdot}nH_2O$ (1) and $(NH_4)_{3.5}(C_3H_{12}N_2)_{3.5}[Ni(H_2O)_6]_{1.25}{[Ni(H_2O)_5]_2[V_2P_2BO_{12}]_6{\cdot}nH_2O$ (2) have been synthesized and structurally characterized. Inter-diffusion methods were employed to prepare the compounds. The cluster anion $[(NH_4)\;{\supset}\;V_2P_2BO_{12}]_6$ is used as a building unit in the synthesis of new compounds containing $Ni(H_2O){^{2+}_5}$ in the presence of pyrazine and 1,3-diaminopropane. Compounds contain isolated cluster anions with general composition ${[Ni(H_2O)_5]_n[(NH_4)\;{\supset}\;V_2P_2BO_{12}]_6}^{-(17-2n)}$ (n = 2, 4). Crystal data: $(NH_4)_{10}[Ni(H_2O)_5]_4[V_2P_2BO_{12}]_6{\cdot}nH_2O$, monoclinic, space group C2/m (no. 12), a = 27.538(2) ${\AA}$, b = 20.366(2) ${\AA}$, c = 11.9614(9) ${\AA}$, ${\beta}$ = 112.131(1)$^{\circ}$, Z = 8; $(NH_4)_{3.5}(C_3H_{12}N_2)_b[Ni(H_2O)_6]_{3.5}{[Ni(H_2O)_5]_2[V_2P_2BO_{12}]_6{\cdot}nH_2O$, triclinic, space group P-1 (no. 2), a = 17.7668(9) ${\AA}$, b = 17.881(1) ${\AA}$, c = 20.668(1) ${\AA}$, ${\alpha}$ = 86.729(1)$^{\circ}$, ${\beta}$ \ 65.77(1)$^{\circ}$, ${\gamma}$ = 80.388(1)$^{\circ}$, Z = 2.

Photopolymerization of Methyl Methacrylate with p-X-$C_{6}H_{4}SiH_{3}$ (X = F, $CH_3$, $OCH_3$)

  • U, Hui Gwon;Kim, Bo Hye;Jo, Myeong Sik;Kim, Dae Yeong;Choe, Yeong Seop;Gwak, Yeong Chae;Ham, Hui Seok;Kim, Dong Pyo;Hwang, Taek Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1337-1340
    • /
    • 2001
  • The bulk photopolymerization of methyl methacrylate (MMA) with para-substituted phenylsilanes such as F-C6H4SiH3 (1), H3C-C6H4SiH3 (2), and H3CO-C6H4SiH3 (3) was performed to produce poly(MMA)s containing the respective silyl moiety as an end group. For all the hydrosilanes, the polymerization yields and the polymer molecular weights decreased, whereas the TGA residue yields and the relative intensities of Si-H IR stretching bands increased as the relative silane concentration over MMA increased. The polymerization yields and polymer molecular weights of MMA with 1-3 increased in the order of 3 < 1 < 2. These hydrosilanes influence significantly upon the photopolymerization of MMA as both chain-initiation and chain-transfer agents.

Study of reaction mechanism in pre-reforming for MCFC (MCFC의 예비 개질 반응 메커니즘 연구)

  • Lee, Woo-Hyung;Park, Yong-Ki
    • Industry Promotion Research
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, the reaction mechanism of ethane and the reaction rate equation suitable for hydrocarbon reforming were studied. Through the reaction mechanism analysis, it was confirmed that three reactions (CO2 + H2, C2H6 + H2, C2H6 + H2O) proceed during the reforming reaction of ethane, each reaction rate (CO2+H2($r=3.42{\times}10-5molgcat.-1\;s-1$), C2H6+H2($r=3.18{\times}10-5mol\;gcat.-1s-1$), C2H6+H2O($r=1.84{\times}10-5mol\;gcat.-1s-1$)) was determined. It was confirmed that the C2H6 + H2O reaction was a rate determining step (RDS). And the reaction equation of this reaction can be expressed as r = kS * (KAKBPC2H6PH2O) / (1 + KAPC2H6 + KBPH2O) (KA = 2.052, KB = 6.384, $kS=0.189{\times}10-2$) through the Langmuir-Hinshelwood model. The obtained equation was compared with the derived power rate law without regard to the reaction mechanism and the power rate law was relatively similar fitting in the narrow concentration change region (about 2.5-4% of ethane, about 60-75% of water) It was confirmed that the LH model reaction equation based on the reaction mechanism shows a similar value to the experimental value in the wide concentration change region.

Synthesis and Characterization of a Di-$\mu$-oxo-bridged Molybdeum(V) Complexes (두 개 산소가교형 몰리브덴(V) 착물의 합성과 그 성질에 관한 연구)

  • Doh, Gil Myung;Kim, Ill Chool;Choi, Bo Yong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.198-203
    • /
    • 1995
  • The Mo(V) $di-\mu-oxo$ type $(Mo_2O_4(H_2O)_2L)$ complexes $(L:\;C_3H_7CH(SCH_2COOH)_2,\;C_6H_5CH(SCH_2COOH)_2,\;CH_3OC_6H_4CH(SCH_2COOH)_2,\;C_5H_{10}C(SCH_2COOH)_2,\;C_3H_7C(CH_3)(SCH_2COOH)_2,\;C_3H_7CH(SCH_2CH_2COOH)_2,\;C_6H_5CH(SCH_2CH_2COOH)_2)$ have been prepared by the reaction of $[Mo_2O_4(H_2O)_6]^{2+}$ with a series of dithiodicarboxy ligands. These complexes are completed by two terminal oxygens arranged trans to one another and each ligand forms a chelate type between two molybdenum. In $Mo_2O_4(H_2O)_2L$, two $H_2O$ coordinated at trans site of terminal oxygens. The prepared complexes have been characterized by elemental analysis, infrared spectra, electronic spectra, and nuclear magnetic resonance spectra. In the potential range -0.00 V to -1.00 V at a scan rate of 20 $mVs^{-1}$, a cathodic peak at -0.50∼-0.58 V (vs. SCE) and an anodic peak at -0.40∼-0.43 V (vs. SCE) have been observed in aquous solution. The ratio of the cathodic to anodic current ($I_{pc}/I_{pa}$) is almost 1, we infer that redox is reversible reaction.

  • PDF

Reactions, Hydrogenation and Isomerization of Unsaturated Esters with a Rhodium(I)-Perchlorato Complex

  • Jeong Hyun Mok;Chin Chong Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.468-471
    • /
    • 1986
  • The isolated products from the reactions of $Rh(ClO_4)(CO)(PPh_3)_2$ (1) with CH_2$ = $CHCO_2C_2H_5$ (2) and trans-$CH_3CH$ = $CHCO_2C_2H_5$ (3) contain 80∼ 90% of $[Rh(CH_2 = CHCO_2C_2H_5)(CO)(PPh_3)_2]ClO_4$ (4) and [Rh(trans-$CH_3CH = CHCO_2C_2H_5(CO)(PPh_3)_2]ClO_4$ (5), respectively where 2 and 3 seem to be coordinated through the carbonyl oxygen. It has been found that complex 1 catalyzes the isomerization of $CH_2 = CH(CH_2)_8CO_2C_2H_5$ (6) to $CH_3(CH_2)_nCH = CH(CH_2)_{7-n}CO_2C_2H_5$ (n = 0∼7) under nitrogen at 25$^{\circ}C$. The isomerization of 6 is slower than that of $CH_2 = CH(CH_2)_9CH_3$ to $CH_3(CH_2)_nCH$ = $CH(CH_2)_{8-n}CH_3$ (n = 0∼8), which is understood in terms of the interactions between the carbonyl oxygen of 6 and the catalyst. It has been also observed that complex 1 catalyzes the hydrogenation of 2, 3, 6, trans-$C_6H_5CH = CHCO_2C_2H_5$ (7), $CH_3(CH_2)_7CH = CH(CH_2)_7CO_2C_2H_5$ (8) and $CH_2 = CH(CH_2)_9CH_3$ (9), and the isomerization (double bond migration) of 6 and 9 under hydrogen at 25$^{\circ}C$. The interactions between the carbonyl oxygen of the unsaturated esters and the catalyst affect the hydrogenation in such a way that the hydrogenation of the unsaturated esters becomes slower than that of simple olefins.