• 제목/요약/키워드: $CO_2$ utilization

검색결과 625건 처리시간 0.027초

작업 특성을 반영한 중규모 굴삭기의 CO2 배출량산정을 위한 실험적 연구 (Experimental Research for CO2 Emission Estimation of Medium-Scale Excavator Reflecting Work Characteristics)

  • 김승현;이동욱
    • 대한토목학회논문집
    • /
    • 제37권4호
    • /
    • pp.717-727
    • /
    • 2017
  • 전체 산업에서 원재료사용의 40%, 에너지소모의 30%, 그리고 $CO_2$ 배출량의 30% 이상을 차지하는 건설 산업에서의 온실가스 배출에 대한 연구는 LCA를 통한 연구가 주류를 이루고 있다. 하지만 건설 산업의 생애 주기에서 $CO_2$ 배출량이 많은 단계는 운영단계 보다 시공단계가 더 큰 것으로 평가되며, 시공단계에서 환경부하를 가장 크게 유발하는 요인은 화석연료를 사용하는 건설기계일 것이다. 따라서 본 연구에는 국내 건설기계 등록대수 중 두 번째로 많고 실제 건설 현장에서 활용도가 가장 높은 굴삭기를 대상으로 작업 형태에 따른 생산성과 엔진부하 특성을 분석하였다. 그리고 굴삭기의 운행 특성을 공회전 무부하상태와 동력이 전달되는 부하상태로 구분하여 배기가스를 PEMS 장비를 이용해 직접측정방식으로 분석하였다. 실제 운행 상태에 따른 엔진 부하량과 배기가스 배출 특성요인들과의 상관관계를 분석하여 $CO_2$ 배출량을 산정하였다. 그리고 본 연구를 통해 산정된 건설기계의 $CO_2$ 배출량과 탄소배출계수를 이용하는 방법으로 산정된 $CO_2$ 배출량과의 차이를 분석하였다.

염산용액(鹽酸溶液)에서 코발트(II)와 망간(II)의 이온 평형(平衡) 및 Alamine336에 의한 용매추출(溶媒抽出) 비교(比較) (Ionic Equilibria and Comparison of Solvent Extraction of Cobalt(II) and Manganese(II) from HCl Solution by Alamine336)

  • 이만승;신선명
    • 자원리싸이클링
    • /
    • 제19권4호
    • /
    • pp.29-34
    • /
    • 2010
  • 염산 용액에서 코발트(II)와 망간(II)의 이온평형을 해석하여 염산농도에 따른 착물의 농도분포를 구했다. 염산농도 4에서 10 M 사이의 범위에서 코발트의 대부분은 $CoCl_2$로, 망간은 $MnCl_{3}^-$$MnCl_2$로 존재한다. Alamine336에 의한 코발트와 망간 추출반응의 평형상수를 이용하여 두 금속의 등온추출곡선을 구했다. 망간 추출반응의 평형상수가 코발트의 평형상수보다 크나, 등온추출곡선을 비교하면 동일한 추출조건에서 코발트가 망간보다 Aalmine336에 효율적으로 추출된다.

A Ferroxidase, Cfo1, Regulates Diverse Environmental Stress Responses of Cryptococcus neoformans through the HOG Pathway

  • Lee, Kyung-Tae;Lee, Jang-Won;Lee, Dohyun;Jung, Won-Hee;Bahn, Yong-Sun
    • Mycobiology
    • /
    • 제42권2호
    • /
    • pp.152-157
    • /
    • 2014
  • The iron uptake and utilization pathways play a critical role in allowing human pathogens, including Cryptococcus neoformans, the causative agent of fatal meningoencephalitis, to survive within the mammalian body by competing with the host for iron. Here we show that the iron regulon is also required for diverse environmental stress responses and that in C. neoformans, it is regulated by the high-osmolarity glycerol response (HOG) pathway. Between CFO1 and CFO2, two ferroxidase genes in the iron regulon, CFO1 but not CFO2 was induced during oxidative and osmotic stress. Interestingly, we found that the HOG pathway repressed basal expression of both CFO1 and CFO2. Furthermore, when the HOG pathway was blocked, CFO2 also responded to oxidative and osmotic stress and the response of CFO1 was increased. We also established that CFO1 plays a major role in responding and adapting to diverse environmental stresses, including oxidative and genotoxic damage, osmotic fluctuations, heavy metal stress, and stress induced by cell membrane destabilizers. Therefore, our findings indicate that in C. neoformans, the iron uptake and utilization pathways are not only required for iron acquisition and survival, but also play a significant role in the environmental stress response through crosstalk with the HOG pathway.

독일의 농업부산물을 이용한 바이오가스 생산시스템 (State-of-the-art of Production and Utilization of Biogas in Germany)

  • Oechsner, Hans
    • 한국유기농업학회:학술대회논문집
    • /
    • 한국유기농학회 2009년도 상반기 학술대회
    • /
    • pp.343-366
    • /
    • 2009
  • Biogas can be generated out of a variety of organic substances and is suitable for different utilizations. It is very efficient in technical application and has a good balance between energy input and output (1 : 7). Moreover there is a great reduction of carbon dioxide (6 - 7 t $CO_2$/ ha). By means of biogas energy can be produced locally and allows maximum energy utilization. Therefore in the next years biogas will become more important in Germany, also for the scientific research area. In the future we have to deal with questions about the improvement of efficiency of the biogas process intensified.

  • PDF

목질계 폐기물의 에너지 자원화 기술 개발 (Development of Energy Recycling Technology Using Woody Waste)

  • 유경선;구재회;선도원;최연석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.713-716
    • /
    • 2007
  • Interests have been focused to the renewable energy because energy cost of fossil fuel increased and global climate change caused by CO2 evolution became severe. To overcome these problems, it is essential to develop the energy conversion technologies of renewable resources. Therefore, production and utilization state of wood and woody waste was firstly investigated and then various technologies (pyrolysis, gasification, and combustion) converting the wood and woody waste to energy were summarized. Some case studies of woody waste utilization in europe was introduced with the policy of EU countries. Economical aspect of woody waste was compared with the current fossil fuels and the energy policy of wood and woody waste was suggested.

  • PDF

Growth regime and environmental remediation of microalgae

  • Hammed, Ademola Monsur;Prajapati, Sanjeev Kumar;Simsek, Senay;Simsek, Halis
    • ALGAE
    • /
    • 제31권3호
    • /
    • pp.189-204
    • /
    • 2016
  • Microalgal bioremediation of CO2, nutrients, endocrine disruptors, hydrocarbons, pesticides, and cyanide compounds have evaluated comprehensively. Microalgal mitigation of nutrients originated from municipal wastewaters, surface waters, and livestock wastewaters has shown great applicability. Algal utilization on secondary and tertiary treatment processes might provide unique and elegant solution on the removing of substances originated from various sources. Microalgae have displayed 3 growth regimes (autotrophic, heterotrophic, and mixotrophic) through which different organic and inorganic substances are being utilized for growth and production of different metabolites. There are still some technology challenges requiring innovative solutions. Strain selection investigation should be directed towards identification of algal that are extremophiles. Understanding and manipulation of metabolic pathways of algae will possible unfold solution to utilization of algae for mitigation of dissolve organic nitrogen in wastewaters.

Study on multi-objective optimization method for radiation shield design of nuclear reactors

  • Yao Wu;Bin Liu;Xiaowei Su;Songqian Tang;Mingfei Yan;Liangming Pan
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.520-525
    • /
    • 2024
  • The optimization design problem of nuclear reactor radiation shield is a typical multi-objective optimization problem with almost 10 sub-objectives and the sub-objectives are always demanded to be under tolerable limits. In this paper, a design method combining multi-objective optimization algorithms with paralleling discrete ordinate transportation code is developed and applied to shield design of the Savannah nuclear reactor. Three approaches are studied for light-weighted and compact design of radiation shield. Comparing with directly optimization with 10 objectives and the single-objective optimization, the approach by setting sub-objectives representing weight and volume as optimization objectives while treating other sub-objectives as constraints has the best performance, which is more suitable to reactor shield design.

Electrochemical Performance of Lithium Sulfur Batteries with Plasticized Polymer Electrolytes based on P(VdF-co-HFP)

  • Park, Jeong-Ho;Yeo, Sang-Yeob;Park, Jung-Ki;Lee, Yong-Min
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.110-115
    • /
    • 2010
  • The plasticized polymer electrolytes based on polyvinylidene fluoride-co-hexafluoropropylene (P(VdF-co-HFP)), tetra (ethylene glycol) dimethyl ether (TEGDME), and lithium perchlorate ($LiClO_4$) are prepared for the lithium sulfur batteries by solution casting with a doctor-blade. The polymer electrolyte with EO : Li ratio of 16 : 1 shows the maximum ionic conductivity, $6.5\;{\times}\;10^{-4}\;S/cm$ at room temperature. To understand the effect of the salt concentration on the electrochemical performance, the polymer electrolytes are characterized using electrochemical impedance spectroscopy (EIS), infrared spectroscopy (IR), viscometer, and differential scanning calorimeter (DSC). The optimum concentration and mobility of the charge carriers could lead to enhance the utilization of sulfur active materials and the cyclability of the Li/S unit cell.

Genomic Analysis of Actinomyces sp. Strain CtC72, a Novel Fibrolytic Anaerobic Bacterium Isolated from Cattle Rumen

  • Joshi, Akshay;Vasudevan, Gowdaman;Engineer, Anupama;Pore, Soham;Hivarkar, Sai Suresh;Lanjekar, Vikram Bholanath;Dhakephalkar, Prashant Kamalakar;Dagar, Sumit Singh
    • 한국미생물·생명공학회지
    • /
    • 제46권1호
    • /
    • pp.59-67
    • /
    • 2018
  • A xylanolytic and cellulolytic anaerobic bacterium strain CtC72 was isolated from cattle rumen liquor. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain CtC72 shared only 97.78% homology with its nearest phylogenetic affiliate Actinomyces ruminicola, showing its novelty. The strain could grow on medium containing xylan, carboxymethyl cellulose and avicel producing $CO_2$, acetate, and ethanol as major fermentation products. The whole genome analysis of the strain CtC72 exhibited a broad range of carbohydrate-active enzymes required for the breakdown and utilization of lignocellulosic biomass. Genes related to the production of ethanol and stress tolerance were also detected. Further there were several unique genes in CtC72 for chitin degradation, pectin utilization, sugar utilization, and stress response in comparison with Actinomyces ruminicola. The results show that the strain CtC72, a putative novel bacterium can be used for lignocellulosic biomass based biotechnological applications.

The Development of Slag Based Materials for the Reformation of Soft Ground

  • Byeon, Tae-Bong;Kim, Hyung-Suek;Han, Ki-Hyun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.537-541
    • /
    • 2001
  • For the development of reformation material of soft ground using the LD slag, the relation to the particle condition of LD slag and the pH behavior of slag dissolution water, extraction properties of slag, and origination of white water were investigated. When the LD slag is mixed with sea water, the pH of solution ranged between 9.47 and 10.0. On the other hand, when mixed with distilled water, the pH was about 10.4 to 12.1. For the as-received slag and the aged slag in sea water, a pH of 11.5 to 12.0 was observed when the particle size was less than 0.5mm. For the reoxidized slag in seawater, the pH of the solution was lower than 9.5 when the particle size was bigger than 0.075mm. For the aged slag and reoxidized slag, the pH of the solution remained constant when the addition ratio of sea water to the slag was higher than 500 times. The main elements dissolved from the slag were Ca and Mg ions. When the pH went over 9.0, the white water started to font which was caused by the CaCO$_3$and Mg(OH)$_2$.

  • PDF