• Title/Summary/Keyword: $CO_2$ solubility

Search Result 361, Processing Time 0.028 seconds

Solubilities of Salen Derivatives and Their Cobalt Complex in Liquid and Supercritical CO2

  • Koh, Seung-Hyun;Jeon, Byung-Wan;Kim, Ha-Kwon;Park, Kwang-Heon;Kim, Hong-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.471-475
    • /
    • 2004
  • The solubility of N,N'-Bis(salicylidene) ethylenediamine (n-salen) and N,N'-bis(3,5-di-tert-butylsalicylidene) ethylenediamine (t-butyl-salen) was studied with in-situ UV-VIS spectrometer. n-Salen is 3-5 times more soluble than t-butyl-salen in liquid or supercritical $CO_2$. This behavior may be attributed to Lewis acid-base interaction between salen and $CO_2$. The chelation of salen with $Co^{++}$ ion in supercritical condition was confirmed to be fast enough above room temperature. However, the metal ion extraction capability of t-butyl salen is relatively poor because of its low solubility and ionic nature of complex.

Gas Permeation Properties of Hydroxyl-Group Containing Polyimide Membranes

  • Jung, Chul-Ho;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • A series of hydroxyl-group containing polyimides (HPIs) were prepared in order to investigate the structure-gas permeation property relationship. Each polymer membrane had structural characteristics that varied according to the dianhydride monomers. The imidization processes were monitored using spectroscopic and thermog-ravimetric analyses. The single gas permeability of He, $H_2$, $CO_2$, $O_2$, $N_2$ and $CH_4$ were measured and compared in order to determine the effect of the polymer structure and functional -OH groups on the gas transport properties. Surprisingly, the ideal selectivity of $CO_2/CH_4$ and $H_2/CH_4$ increased with increasing level of -OH incorporation, which affected the diffusion of $H_2$ or the solubility of $CO_2$ in HPIs. For $H_2/CH_4$ separation, the difference in the diffusion coefficients of $H_2$ and $CH_4$ was the main factor for improving the performance without showing any changes in the solubility coefficients. However, the solubility coefficient of $CO_2$ in the HPIs increased at least four fold compared with the conventional polyimide membranes depending on the polymer structures. Based on these results, the polymer membranes modified with -OH groups in the polymer backbone showed favorable gas permeation and separation performance.

Structural and Solubility Characteristics of Coenzyme Q10 Complexes Including Cyclodextrin and Starch (사이클로덱스트린과 전분을 이용한 coenzyme Q10 복합체의 특성 연구)

  • Lee, Joon-Kyoung;Lee, Hyun-Joo;Lim, Jae-Kag
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.180-188
    • /
    • 2014
  • This study focused on assessing the solubility and structural characteristics of two types of coenzyme $Q_{10}$ ($CoQ_{10}$) complexes: the $CoQ_{10}$-starch and the $CoQ_{10}$-cyclodextrin complexes. The solubility of $CoQ_{10}$-starch complex increased significantly as the temperature was increased. However, the solubility of $CoQ_{10}$-cyclodextrin complex reached a peak at $37^{\circ}C$, and strong aggregation occurred at $50^{\circ}C$. When the temperature was raised to $80^{\circ}C$, the $CoQ_{10}$-cyclodextrin complex dissociated owing to the weakening of bonds, resulting in $CoQ_{10}$ emerging at the surface of water. Therefore, $CoQ_{10}$-cyclodextrin complexes have lower solubility, due to their reduced heat-stability, than do the $CoQ_{10}$-starch complexes. Structural differences between the two $CoQ_{10}$ complexes were confirmed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD), and differential scanning calorimeter (DSC). The $CoQ_{10}$-cyclodextrin complex included an isoprenoid chain of $CoQ_{10}$, while the $CoQ_{10}$-starch complex included both the benzoquinone ring and the isoprenoid chain of $CoQ_{10}$. These results suggest that $CoQ_{10}$-starch complexes possess higher heat-stability and solubility than do the $CoQ_{10}$-cyclodextrin complexes.

Solubility of Carbon Dioxide in Strongly Basic Ionic Liquid

  • Sung, Jun-Kyung;Kim, Sung-Hyun;Cheong, Min-Serk;Baek, Il-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2797-2800
    • /
    • 2010
  • For the purpose of developing advanced new absorbents for carbon dioxide, ionic liquids (ILs) are considered as alternative materials due to their superior properties to conventional organic solvents. Since low $CO_2$ solubility in ionic liquids is a major concern for their application as absorbents, it is essential to focus on improving $CO_2$ absorbing capability of ILs. In this paper, strongly basic ionic liquids, namely [$C_n$-mim]OPh (n = 2, 4, 6), have been synthesized and studied over a wide range of temperature and pressure changes. [$C_n$-mim]OPh can be easily synthesized from corresponding [$C_n$-mim]Cl and sodium phenoxide and has been found to be good $CO_2$ absorbents.

Effect of $CO_2$Gas injection on Properties of Extruded Corn Starch (탄산가스 주입이 압출팽화 옥수수전분의 성질에 미치는 영향)

  • 류기형;강선희;이은용;임승택
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.436-442
    • /
    • 1997
  • Corn starch was extruded under relatively low shear, high moisture, and low temperature. Puffing of corn starch dough was induced by injecting $CO_2$gas in the range from 0MPa to 0.09MPa. Piece density and compressive modulus for puffed corn starch were decreased by increasing the injection pressure to 0.07MPa, and increased above 0.07MPa. the microstructure of corn starch puffed with $CO_2$gas showed thick cell size, compared with those puffed with steam. RVA paste viscosity curves of corn starch puffed with $CO_2$had different patterns from those puffed with steam, probably resulted from partial gelatinization of starch. Water absorption and solubility were not significantly changed by $CO_2$injection pressure, but the average degree of polymerization was reduced by higher $CO_2$injection. The water absorption, water solubility, and the average degree of polymerization for corn starch puffed with $CO_2$were significantly lower than those puffed with steam.

  • PDF

Numerical study of CO2 hydrate dissolution rates in the ocean: Effect of pressure, temperature, and salinity

  • Kyung, Daeseung;Ji, Sukwon;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this study, we numerically investigated the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on $CO_2$ hydrate dissolution rates in the ocean. Mass transfer equations and $CO_2$ solubility data were used to estimate the $CO_2$ hydrate dissolution rates. The higher pressure and lower temperature significantly reduced the $CO_2$ hydrate dissolution rates due to the increase of $CO_2$ particle density. In the high salinity condition, the rates of $CO_2$ hydrate dissolution were decreased compared to pure water control. This is due to decrease of $CO_2$ solubility in surrounding water, thus reducing the mass transfer of $CO_2$ from the hydrate particle to $CO_2$ under-saturated water. The results obtained from this study could provide fundamental knowledge to slow down or prevent the $CO_2$ hydrate dissolution for long-term stable $CO_2$ storage in the ocean as a form of $CO_2$ hydrate.

A Study to Increase Methane Ratio of Landfill Gas by Capturing Carbon Dioxide (매립지가스의 메탄 비율 증가를 위한 이산화탄소 포집 연구)

  • Bada Kim;Junghyun Park;Sungwoon Choi;Youngchul An;Daeyup Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.25-31
    • /
    • 2023
  • The purpose of this study is to increase the thermal efficiency of a landfill gas (LFG) power generation engine by capturing carbon dioxide (CO2) from landfill gas (LFG) using monoethanolamine (MEA), which is widely used in the chemical CO2 absorption process. Since the use of LFG as an energy source can be a means of reducing greenhouse gas emissions, MEA can be used to reduce CO2 in LFG and increase the concentration of CH4 to improve the efficiency of power generation. In this study, experiments were conducted to measure the solubility of CO2 and CH4 in MEA solution, increase the solubility under different conditions, and analyse the dissolution characteristics. It was found that the CO2 absorption rate increased as the ratio of MEA to reaction gas increased. There is an optimum MEA concentration to maximise CO2 solubility, and even if the concentration is increased above this concentration, the solubility does not improve significantly. This study provided fundamental work to develop a more practical fuel by capturing CO2 from LFG and increasing the concentration of CH4 while reducing greenhouse gas emissions.

Characterization of CO2 Adsorption Process for a Water Removal from Coal (석탄 내 수분 제거를 위한 CO2 흡착 효과에 대한 연구)

  • SEUNGTAEK LEE;HAKDEOK KIM;JUHUN SONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 2024
  • In this study, the extent of water removal in the high-moisture coal was measured. The simplified adsorption model was developed to predict the extent of water removal. The water removal was observed to increase up to 25% at saturation condition of 25℃. The modeling work shows that adsorption contributes the water removal only by 3%, whereas other factors such as CO2 solubility and wettability would be responsible for the water removal.

Solubility of carbon dioxide in ionic liquids with methylsulfate anion (Methylsulfate 음이온을 갖는 이온성 액체에 대한 이산화탄소의 용해도)

  • Jung, Jun-Young;Lee, Byung-Chul
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.467-476
    • /
    • 2011
  • Solubility data of carbon dioxide ($CO_2$) in the imidazolium-based ionic liquids with methylsulfate anion are presented at pressures up to about 45 MPa and at temperatures between 303.15 K and 343.15 K. The ionic liquids studied in this work were 1-ethyl-3-methylimidazolium methylsulfate ([emim][$mSO_4$]), 1-butyl-3-methylimidazolium methylsulfate ([bmim][$mSO_4$]). The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the binary mixtures using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. The equilibrium pressure increased very steeply at high $CO_2$ compositions. The $CO_2$ solubility in ionic liquids increased with increase of the total length of alkyl chains attached to the imidazolium cation of the ionic liquids. The phase equilibrium data for the $CO_2$ + ionic liquid systems have been correlated using the Peng-Robinson equation of state.

CO2 Solubilities in Amide-based Brønsted Acidic Ionic Liquids

  • Palgunadi, Jelliarko;Im, Jin-Kyu;Kang, Je-Eun;Kim, Hoon-Sik;Cheong, Min-Serk
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.146-150
    • /
    • 2010
  • A distinguished class of hydrophobic ionic liquids bearing a Br${\o}$nsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and $\varepsilon$-caprolactam with trifluoroacetic acid and physical absorptions of $CO_2$ in these ionic liquids were demonstrated and evaluated. $CO_2$ solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that $CO_2$ solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility.