DOI QR코드

DOI QR Code

Solubilities of Salen Derivatives and Their Cobalt Complex in Liquid and Supercritical CO2

  • Koh, Seung-Hyun (Green Nuclear Research Lab., EIRC, Kyung Hee University) ;
  • Jeon, Byung-Wan (Green Nuclear Research Lab., EIRC, Kyung Hee University) ;
  • Kim, Ha-Kwon (Green Nuclear Research Lab., EIRC, Kyung Hee University) ;
  • Park, Kwang-Heon (Green Nuclear Research Lab., EIRC, Kyung Hee University) ;
  • Kim, Hong-Doo (Green Nuclear Research Lab., EIRC, Kyung Hee University)
  • Published : 2004.04.20

Abstract

The solubility of N,N'-Bis(salicylidene) ethylenediamine (n-salen) and N,N'-bis(3,5-di-tert-butylsalicylidene) ethylenediamine (t-butyl-salen) was studied with in-situ UV-VIS spectrometer. n-Salen is 3-5 times more soluble than t-butyl-salen in liquid or supercritical $CO_2$. This behavior may be attributed to Lewis acid-base interaction between salen and $CO_2$. The chelation of salen with $Co^{++}$ ion in supercritical condition was confirmed to be fast enough above room temperature. However, the metal ion extraction capability of t-butyl salen is relatively poor because of its low solubility and ionic nature of complex.

Keywords

References

  1. Eckert, C. A.; Knutson, B. I.; Debenedetti, P. G. Nature 1996, 373,313.
  2. Wells, S. L.; DeSimmone, J. M. Angew. Chem. Int. Ed. 2001, 40,518. https://doi.org/10.1002/1521-3773(20010202)40:3<518::AID-ANIE518>3.0.CO;2-4
  3. Mesiano, A. J.; Beckman, E. J.; Rusell, A. J. Chem. Rev. 1999, 99,623. https://doi.org/10.1021/cr970040u
  4. Laintz, K. E.; Yu, J. J.; Wai, C. M. Curr. Anal. Chem. 1992, 64,311. https://doi.org/10.1021/ac00027a012
  5. Wang, J.; Marshall, W. D. Anal. Chem. 1994, 66, 3900. https://doi.org/10.1021/ac00094a010
  6. Wai, C. M.; Wang, S.; Yu, J.-J. Anal. Chem. 1996, 68, 3516. https://doi.org/10.1021/ac960276i
  7. Wai, C. M.; Waller, B. Ind. Eng. Chem. Res. 2000, 39, 4837. https://doi.org/10.1021/ie0002879
  8. van Dort, H. M.; Guerson, H. J. Recl. Trav. Chim. Pays-Bas 1967,86, 520.
  9. Chang, S.; Heid, R. M.; Jacobson, E. N. Tetrahedron Lett. 1994,35, 669. https://doi.org/10.1016/S0040-4039(00)75786-8
  10. Hunt, F.; Ohde, H.; Wai, C. M. Rev. Sci. Instrum. 1999, 70, 4661. https://doi.org/10.1063/1.1150129
  11. Pietikainen, P.; Haikarainen, A. J. Mol. Catal. A 2002, 180, 59. https://doi.org/10.1016/S1381-1169(01)00446-0
  12. Liang, S.; Bu, X. R. J. Org. Chem. 2002, 67, 2702. https://doi.org/10.1021/jo0161779
  13. Jacobson, E. N. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.;VCH: New York, 1993; Chapter 4.
  14. Musie, G. T.; Wei, M.; Subramaniam, B.; Busch, D. H. Inorg.Chem. 2001, 40, 3336. https://doi.org/10.1021/ic001288w

Cited by

  1. Synthesis and Characterization of Penta- and Hexa- Coordinated Silicon Compounds with Schiff Bases Containing -NCS Functionality vol.32, pp.2, 2009, https://doi.org/10.1515/MGMC.2009.32.2.79
  2. Supercritical fluid extraction of uranium and fission products in reprocessing of simulated spent nuclear fuel in weakly acidic solutions of Fe(III) nitrate in the presence of tributyl phosphate vol.56, pp.2, 2014, https://doi.org/10.1134/S1066362214020064
  3. Dissolution of oxide nuclear fuel in subacidic iron(III) nitrate solutions and extraction of uranium from it with tributyl phosphate-containing supercritical carbon dioxide vol.8, pp.7, 2014, https://doi.org/10.1134/S1990793114070124
  4. The behavior of uranium and fission products in the processing of model spent nuclear fuel in iron(III) nitrate solutions in the presence of supercritical tributyl phosphate-containing carbon dioxide vol.8, pp.8, 2014, https://doi.org/10.1134/S1990793114080107
  5. Deactivation of metals, fabrics, and soils in a liquid CO2 medium vol.41, pp.5, 2007, https://doi.org/10.1134/S0040579507050594