• Title/Summary/Keyword: $CO_2$ separation

Search Result 842, Processing Time 0.028 seconds

Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample

  • Zeng, Yanxia;Zhu, Xiashi;Xie, Jiliang;Chen, Li
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.295-312
    • /
    • 2021
  • A new ionic liquid functionalized magnetic silica nanoparticle was synthesized and characterized and tested as an adsorbent. The adsorbent was used for magnetic solid phase extraction on ICP-MS method. Simultaneous determination of precious metal Au has been addressed. The method is simple and fast and has been applied to standard water and surface water analysis. A new method for separation/analysis of trace precious metal Au by Magnetron Solid Phase Extraction (MSPE) combined with ICP-MS. The element to be tested is rapidly adsorbed on CoFe2O4@SiO2@[BMIM]PF6 composite nano-adsorbent and eluted with thiourea. The method has a preconcentration factor of 9.5-fold. This method has been successfully applied to the determination of gold in actual water samples. Hydrophobic Ionic Liquids (ILs) 1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6) coated CoFe2O4@SiO2 nanoparticles with core-shell structure to prepare magnetic solid phase extraction agent (CoFe2O4@SiO2@ILs) and establish a new method of MSPE coupled with inductively coupled plasma mass spectrometry for separation/analysis of trace gold. The results showed that trace gold was adsorbed rapidly by CoFe2O4@SiO2@[BMIM]PF6 and eluanted by thiourea. Under the optimal conditions, preconcentration factor of the proposed method was 9.5-fold. The linear range, detection limit, correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.01~1000.00 ng·mL-1, 0.001 ng·mL-1, 0.9990 and 3.4% (n = 11, c = 4.5 ng·mL-1). The CoFe2O4@SiO2 nanoparticles could be used repeatedly for 8 times. This proposed method has been successfully applied to the determination of trace gold in water samples.

Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications (금속-유기 골격계 다공성 흡착제의 이산화탄소 흡착성능과 압력순환흡착 공정 적용의 문제점)

  • Kim, Moon Hyeon;Choi, Sang Ok;Choo, Soo Tae
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.370-378
    • /
    • 2013
  • This review has shown the capability of MOFs and ZIFs materials to adsorb $CO_2$ under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of $15{\sim}40^{\circ}C$ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of $CO_2$. The extent of $CO_2$ adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant $CO_2$ uptakes. They possess a $CO_2$ adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive $CO_2$ separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.

Development of High Pressure Membrane-Based Associated Gas Separation System for DME Synthesis (DME 합성을 위한 고압 유휴가스 분리용 Membrane 시스템 개발)

  • Kim, Hackeun;Bae, Myongwon;Lee, Sangjin;Ha, Seongyong;Lee, Chungseop;Mo, Yonggi
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • The objective of this study is to develop a gas pro-treatment system for DME synthesis, wherein this system separates $CO_2$ from Flaring gas as Membrane, in order to save raw material ($CH_4$) cost of DME. In this study, hollow fiber membrane is developed, which is able to separate high-pressure gas, supported by polysulfone and coated with amorphous fluorinated polymer. Throughout the evaluation of the membrane's separation characteristics, the membrane is applied to this system. The membrane is designed by 2 stages for over 90% removal rate of $CO_2$ and over 90% recovery rate of $CH_4$. The bench scale of pro-treatment system is developed as $25Nm^3/hr$.

Synchrotron SAXS Study on the Micro-Phase Separation Kinetics of Segmented Block Copolymer

  • Lee, Han-Sup;Yoo, So-Ra;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.98-107
    • /
    • 2001
  • The phase transition behavior isothermal micro-phase separation kinetics of polyester-based thermoplastic elastomer were studied using the synchrotron X-ray scattering(SAXS) method. The structural changes occurring during heating period were investigated by determining the changes of the one-dimensional correlation function, interfacial thickness and Porod constant. Based on the abrupt increases of the domain spacing and interfacial thickness, a major structural change occurring well below the melting transition temperature is suggested. Those changes are explained in terms of melting of the thermodynamically unstable hard domains or/and the interdiffusion of the hard and soft segments in the interfacial regions. SAXS profile changes during the micro-phase separation process were also clearly observed at various temperatures and the separation rate was found to be sensitively affected by the temperature. The peak position of maximum scattering intensity stayed constant during the entire course of the phase separation process. The scattering data during the isothermal phase separation process was interpreted with the Cahn-Hilliard diffusion equation. The experimental data obtained during the early stage of the phase separation seems to satisfy the Cahn-Hilliard spinodal mechanism. The transition temperature obtained from the extrapolation of the diffusion coefficient to zero value turned out to be about 147$\pm$$2^{\circ}$, which is close to the order-disorder transition temperature obtained from the Porod analysis. The transition temperature was also estimated from the inveriant growth rate. By extrapolating the inveriant growth rate to zero, a transition temperature of about 145$\pm$$\pm$$2^{\circ}$ was obtained.

  • PDF

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

The flow of $CO_{2}$ and $N_{2}$ gases through Asymmetric polytherimide Membrane

  • Park, You-In;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.73-85
    • /
    • 1995
  • The asymmetric hollow fiber membranes were prepared by the wet spining of polyetherimide dope solution and the effect of hollow fiber structures on the permeation characteristics of carbon dioxide and nitrogen gases through these membrane were investigated. As the concentration of the $\gamma$-butyrolactone (GBL) in dope solution, acting as a swelling agent was increased, the structure of hollow fiber was changed from the finger to sponge type. The permeabilities of gases (CO$_{2}$, N$_{2}$) through these membrane were measured over the wide range of pressure under different temperature. The effect of water vapor on the permeabilities of gases was also investigated. The measured permeabilities showed the different characteristics depending on the structure of membranes. It was found that the flow through the pores were dominant over the polymers matrix. Blocking effect by water vapor in the pores of skin layer greatly improved the ideal separation factor of carbon dioxide/nitrogen.

  • PDF

Efficient crosswell EM tomography for monitoring geological sequestration of $CO_2$

  • Lee, Ki-Ha;Kim, Hee-Joon;Song, Yoon-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.321-327
    • /
    • 2003
  • [ $CO_2$ ] sequestration in oil reservoirs can be one of the most effective strategies for long-term removal of greenhouse gas from atmosphere. This paper presents an advantage of the localized nonlinear approximation of integral equation solutions for inverting crosswell electromagnetic data, which are observed as a part of pilot project of $CO_2$ flooding at the Lost Hills oil field in central California, U.S.A. To monitor the migration of $CO_2$, we have used 2-D cylindrically symmetric and 2.5-D tomographic inversion methods. These two schemes produce nearly the same images if the borehole separation is large compared with the skin depth. However, since the borehole separation is much less than five skin depths in this $CO_2$ injection experiment, the 2.5-D model seems to be more reliable than the 2-D model. In fact, the pre-injection 2.5-D image is more successfully compared with induction logs observed in the two wells than the 2-D model. From the time-lapse crosswell imaging, we can confirm the replacement of brine with $CO_2$ makes a decrease of conductivity.

  • PDF

CO2 Separation Techniques Using Ionic Liquids (이온성 액체를 이용한 CO2 분리기술)

  • Cho, Min Ho;Lee, Hyunjoo;Kim, Honggon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Since carbon dioxide, $CO_2$, was revealed as a major greenhouse gas, techniques for its separation, capture, and storage have received increasing interest in recent years. Aqueous amines are the most widely accepted $CO_2$ absorbents, but they cause the problems such as high regeneration energy, thermal degradation, and loss of absorbents due to their volatility. Ionic liquids having high thermal stability, extremely low vapor pressure, and capability of selectively absorbing specific gases have been proposed as new $CO_2$ capturing solvents which may potentially replace aqueous amines. By reviewing the ionic liquids having capability to absorb $CO_2$ reported in previous papers, we seek to develop a comprehensive understanding on the factors that influence the $CO_2$ solubility in ionic liquids such as their structures, absorption temperature, pressure, water content, etc., and to estimate the potential of ionic liquids as $CO_2$ separating media.

A Study on the CO2 Removal Efficiency with Aqueous MEA and Blended Solutions in a Vortex Tube Type Absorber (Vortex Tube 형 흡수장치에서 MEA와 혼합흡수용액을 이용한 CO2 제거 효율 고찰)

  • Ryu, Woo-Jung;Han, Keun-Hee;Choi, Won-Kil;Lee, Jong-Sub;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.795-800
    • /
    • 2009
  • In this study, the $CO_2$ removal characteristics of the Vortex tube type absorbtion apparatus were investigated to enhance the compactness of $CO_2$ absorption process and to reduce the amount of absorbing solution of the $CO_2$ separation process. The Vortex tube with the diameter of 17 mm and the length of 250mm was introduced in the experimental apparatus to treat $20Nm^3/hr$ of $CO_2$ containing flue gas. The flue gases for experiments containing 11~13 vol% of $CO_2$ were supplied from the coal-firing CFBC power plant with 12 ton/hr of steam producing capacity. The mixed solutions of 20 wt% of MEA as base solution with the adding solutions like HMDA, AMP and KOH were used as absorbents. The experiments were executed under the various conditions like the absorbing solution concentrations in the range of 20 to 50 wt%, the flow rate of $CO_2$ containing flue gases in the range of 6 to $15Nm^3/hr$ and the flow rate of absorbing solution in the range of 1.0 to 3.0 l/min. As a results, the $CO_2$ removal efficiency of mixed absorbent of 20 wt% of MEA with HMDA was remarkable. From this study, we concluded that the efficient separation of $CO_2$ from flue gases using the features of the Vortex tube type absorbing unit for gas/liquid contact and the separation of gas/liquid be possible. But more works are needed to increase the $CO_2$ removal efficiency of Vortex tube process.

Hydrogen Generation Characteristics of SMART System with Inherent $CO_2/H_2$ Separation ($CO_2/H_2$ 원천분리 SMART 시스템의 수소생산특성)

  • Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.382-390
    • /
    • 2007
  • To check the feasibility of SMART(Steam Methane Advanced Reforming Technology) system, an experimental investigation was performed. A fluidized bed reactor of diameter 0.052m was operated cyclically up to 10th cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone(domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) condition. The hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased. However, the average hydrogen concentration at 10th cycle was 82.5% and this value is also higher than that of SMR. Based on these results, we could conclude that the SMART system can replace SMR system to generate pure hydrogen without HTS (high tempeature shift), LTS (low temperature shift) and $CO_2$ separation process.