• Title/Summary/Keyword: $CO_2$ selectivity

Search Result 494, Processing Time 0.03 seconds

Solid Circulation and Reaction Characteristics of Mass Produced Particle in a 0.5 MWth Chemical Looping Combustion System (0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 입자의 고체순환 특성 및 반응 특성)

  • RYU, HO-JUNG;JO, SUNG-HO;LEE, SEUNG-YONG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;KIM, JUNGHWAN;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.170-177
    • /
    • 2019
  • Continuous solid circulation test at high temperature and high pressure conditions and batch type reduction-oxidation tests were performed to check feasibility of a 0.5 MWth chemical looping combustion system. Pressure drop profiles were maintained stable during continuous solid circulation up to 16 hours. Therefore, we could conclude that the solid circulation between an air reactor and a fuel reactor could be smooth and stable. The measured fuel conversion and $CO_2$ selectivity were high enough even at high capacity and even after cyclic tests. Therefore, we could expect high reactivity of oxygen carrier at real operation condition.

A study on permeation of $CO_2-N_2-O_2$ mixed gases through a NaY zeolite membrane under permeate evacuation mode (진공모드에서 NaY 제올라이트 막의 $CO_2-N_2-O_2$ 혼합기체의 투과거동 연구)

  • Jeong, Su Jung;Yeo, Jeong-Gu;Han, Moon Hee;Cho, Churl Hee
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.352-359
    • /
    • 2013
  • In the present study, $CO_2$ permeation through a hydrophilic NaY zeolite membrane was studied under permeate evacuation mode for $CO_2$ single gas, $CO_2-N_2$ and $CO_2-O_2$ binary mixtures, and $CO_2-N_2-O_2$ ternary mixture. It was reconfirmed that the $CO_2$ permeation was governed by surface diffusion and the $CO_2$ selectivity was induced from blocking effect of adsorbed $CO_2$ molecules. The $CO_2$ permeance measured in permeate evacuation mode was much lower than that done in He sweeping mode, but was comparable to that obtained under feed pressurization mode. The NaY zeolite membrane showed a considerable $CO_2$ separation for $14%CO_2-80%N_2-6%O_2$ mixture : $CO_2$ permeance was about $1{\times}10^{-7}mol/m^2secPa$ and $CO_2$ selectivity was more than 10. Therefore, it was concluded that NaY zeolite membrane was one of promising membranes for post-combustion CCS process.

Recent Advances on Ionic Liquid based Mixed Matrix Membrane for CO2 Separation (CO2 분리를 위한 이온성 액체 기반 혼합 매트릭스 멤브레인의 최근 발전)

  • Wang, Chaerim;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • The membrane-based CO2 capture is a fast-growing branch in gas separating field. Ionic liquid assisted mixed matrix membrane (MMM), which consists of organic fillers with dispersed ionic liquid, shows high potentiality as a candidate for CO2 separation medium. In MMM, various kinds of ionic liquid and inorganic filler are incorporated into polymer to enhance gas separating performance. Especially, the strong interaction between ionic liquid and organic filler gives huge influence on enhancing the separating performance by increasing affinity, selectivity and adsorption of CO2 into the framework. Also the mechanical properties of metal organic framework are positively tuned by input of ionic liquid to improve CO2 permeability and selectivity. In this review, study of various combinations of ionic liquid and metal organic framework (MOF) in the polymeric membrane for carbon dioxide separation is discussed.

A Fabrication of IR $CO_2$ Sensor based on the MEMS and Characteristic Evaluation (MEMS 기반의 IR $CO_2$ 센서 제작 및 특성 평가)

  • Kim Shin-Keun;Han Yong-Hee;Moon Sung-Wook
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.232-237
    • /
    • 2005
  • In this paper, we fabricated $CO_2$ gas sensor based on the MEMS infrared sensor and characterized its electrical and $CO_2$-sensing properties. The fabricated $CO_2$ gas sensor by MEMS technique has many advanges over NDIR(nondispersive) $CO_2$ sensor such as monolithic fabrication, very high selectivity on $CO_2$, low power consumption and compact system. Microbolometer by surface micromachining was fabricated for gas detector and $CO_2$ filter chip by bulk micromachining was fabricated for signal referencing. By using the proposed and fabricated gas sensor, we are expected to measure $CO_2$ concentration more accurately with high reliability.

Surface Impregnation of Glycine to Activated Carbon Adsorbents for Dry Capture of Carbon Dioxide

  • Lim, Yun Hui;Adelodun, Adedeji A.;Kim, Dong Woo;Jo, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.99-113
    • /
    • 2016
  • In order to improve the portability of basic absorbents monoethanolamine (MEA) and glycine (Gly), both were supported on microporous activated carbon (AC). Chemical modification by alkali-metal ion exchange (of Li, Na, K) was carried out on Gly-based absorbents. All supported absorbents were subjected to $CO_2$ absorption capacity (pure $CO_2$) and selectivity (indoor level) tests. Textural and chemical characterizations were carried out on test sorbents. All impregnation brought about significant reduction of specific surface area and microporosity of the adsorbent Depreciation in the textural properties was found to result to reduction in pure $CO_2$ sorption. Contrarily, low-level $CO_2$ removal capacity was enhanced as the absorbent dosage increases, resulting in supported 5 molar MEA in methanol solution. Adsorption capacities were improved from 0.016 and 0.8 in raw ACs to 1.065 mmol/g for MEA's. Surface chemistry via X-ray photoelectron spectroscopy (XPS) of the supported sorbents showed the presence of amine, pyrrole and quaternary-N. In reducing sequence of potency, pyridine, amine and pyrrolic-N were noticed to contribute significantly to $CO_2$ selective adsorption. Furthermore, the adsorption isotherm study confirms the presence of various SNGs heterogeneously distributed on AC. The adsorption mechanism of the present AC adsorbents favored Freundlich and Langmuir isotherm at lower and higher $CO_2$ concentrations respectively.

Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation (온실기체 분리용 폴리이서설폰 비대칭 중공사 막의 제조)

  • Kim Jeong-Hoon;Sohn Woo-Ik;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.

Synthesis of Soluble Copolyimides Using an Alicyclic Dianhydride and Their $CO_2/CH_4$ Separation Properties (지환족 다이안하이드라이드를 이용한 용해성 폴리이미드 공중합체 합성 및 메탄/이산화탄소 분리특성)

  • Park, Chae Young;Lee, Yongtaek;Kim, Jeong Hoon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this study, four soluble homo- and co-polyimides using 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and 4,4'-diaminodiphenyl ether (ODA) monomers were synthesized to develop the gas separation membrane with good $CO_2/CH_4$ separation properties. To prepare the copolyimides, 20 mol% of three dianhydrides - (4,4'-(hexafluoroisoproplidene)diphthalic anhydride (6FDA), 4,4'-biphthalic anhydride (BPDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) - were added in DOCDA-ODA monomer mixture, respectively. All the synthesized homo- and co-polyimides were characterized by FT-IR. Their thermal properties were analyzed with differential scanning calorimeter (DSC). Dense membranes were prepared from these copolyimides to check their gas permeation properties for $CO_2$ and $CH_4$ gases using a time-lag method. The permeation testing results are as follows; DOCDA/ODA homopolymer showed 1.71 barrer of $CO_2$ permeability and 74.35 of $CO_2/CH_4$ selectivity. The three polyimide copolymers (DOCDA/6FDA-ODA, DOCDA/BPDA-ODA, DOCDA/BTDA-ODA) showed lower $CO_2/CH_4$ selectivities and higher $CO_2$ permeabilities than the homopolymer (DOCDA-ODA). DOCDA/6FDA-ODA showed twice times higher $CO_2$ permeabilities without severe $CO_2/CH_4$ selectivity loss than the DOCDA-ODA.

Enhancement of the Working Capacity and Selectivity Factor of Calcium-Exchanged Y Zeolites for Carbon Dioxide Pressure Swing Adsorption (이산화탄소 압력순환흡착을 위한 칼슘 이온교환 Y 제올라이트의 작업용량과 선택계수 향상)

  • Kim, Moon Hyeon
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.41-49
    • /
    • 2018
  • Y zeolites with different extra-framework cations, such as $Na^+$, $N^+$, $Ca^{2+}$, and $Cu^{2+}$, with different charge and ionic radius have been investigated to greatly enhance a working capacity (W) of $CO_2$ adsorption at $25^{\circ}C$ and a $CO_2/CO$ selectivity factor (S). A sample of NaY with a very small amount of 0.012% $Ca^{2+}$ was fully reversible for seven times repeated $CO_2$ adsorption/desorption cycles, thereby forming no surface carbonates unlikely earlier reports. Although at pressures above 4 bar, 2.00% CaY, 1.60% CuY and 1.87% LiY all showed a $CO_2$ adsorption very similar to that measured for NaY, they gave a significant decrease in the adsorption at lower pressures, depending on the metal ion. At 0.5 ~ 2.5 bar, the extent of $CO_2$ adsorption was in the order NaY > 1.60% CuY > 2.00% CaY > 1.87% LiY. All the $Na^+-based$ metals-exchanged zeolites have a FAU (faujasite) framework and a Si/Al value near 2.6; thus, there is no discernible difference in the framework topology, framework chemical compositions, effective aperture size, and channel structure between the zeolite samples. Therefore, the distinctive behavior in the adsorption of $CO_2$ with a character as a weak Lewis acid is associated with the site basicity of the zeolites, and the interaction potentials of the cations. Different trend was shown for a CO adsorption due to weaker quadrupole interactions. Adsorption of $CO_2$ and CO on samples of CaY with 0.012 to 5.23% Ca disclosed a significant dependence on the Ca loading. The $CO_2$ adsorption increased when the cation exists up to ca. 0.05%, while it decreased at higher Ca amounts. However, values for both W and S could greatly increase as the bare zeolite is enriched by $Ca^{2+}$ ions. The 5.23% CaY had $W=2.37mmol\;g^{-1}$ and S = 4.37, and the former value was comparable to a benchmark reported in the literature.

A New Acetate Selective Polyamine Receptor Based on Anthracene and 4-Nitrophenyl Group

  • Lee, Sung-Kyu;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1228-1230
    • /
    • 2011
  • A new amine receptor 2 utilizing anthracene and nitrophenyl group as signaling group was designed and synthesized. The receptor 2 only utilizes four amine N-H's and 9-anthracenyl hydrogen to bind anions. The receptor 2 can bind anions through hydrogen bonds with a selectivity of $CH_3CO_2^-$ > $H_2PO_4^-$ > $F^-$ > $C_6H_5CO_2^-$ > $Cl^-$ in highly polar solvent such as DMSO without protonation of amine.

Characteristics of Heat Stable Salts Treatment Using Anion Exchange Resins in CO2 Absorption Process (음이온교환수지를 이용한 CO2 흡수 공정시 발생하는 열안정성염 처리 특성)

  • Park, Kyung-Bin;Cho, Jun-Hyoung;Jeon, Soo-Bin;Lim, You-Young;OH, Kwang-Joong
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.22-32
    • /
    • 2015
  • In this study, we studied the characteristics of ion exchange for treatment of HSS (heat stable salts) which cause performance reduction in CO2 gas capture amine solution using anion exchange resins. The optimum HSS removal efficiency, 96.1% was obtained when using strong base anion exchange resin SAR10 at dosage 0.05 g/mL, 316 K, pH 12 and the best resin regeneration efficiency, 78.8% was obtained using NaOH solution of 3 M at 316 K. The adsorption data were described well by the Freundlich model and the sorption intensity(n) was 2.0951 lying within the range of favorable adsorption. The adsorption selectivity coefficients were increased by increasing valences and size of ion and desorption selectivity coefficients showed a contradictory tendency to adsorption selectivity coefficients. By continuous HSS removal experiments, 13.3 BV of HSS contaminated solution was effectively treated and the optimum NaOH solution consumption was 5.2 BV to regenerate resins.