• Title/Summary/Keyword: $CO_2$ response

Search Result 1,573, Processing Time 0.029 seconds

Impact of the COVID-19 vaccine booster strategy on vaccine protection: a pilot study of a military hospital in Taiwan

  • Yu-Li Wang;Shu-Tsai Cheng;Ching-Fen Shen;Shu-Wei Huang;Chao-Min Cheng
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • Purpose: The global fight against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has led to widespread vaccination efforts, yet the optimal dosing schedule for SARS-CoV-2 vaccines remains a subject of ongoing research. This study aims to investigate the effectiveness of administering two booster doses as the third and fourth doses at different intervals to enhance vaccine protection. Materials and Methods: This study was conducted at a military regional hospital operated by the Ministry of National Defense in Taiwan. A cohort of vaccinated individuals was selected, and their vaccine potency was assessed at various time intervals following their initial vaccine administration. The study participants received booster doses as the third and fourth doses, with differing time intervals between them. The study monitored neutralizing antibody titers and other relevant parameters to assess vaccine efficacy. Results: Our findings revealed that the potency of the SARS-CoV-2 vaccine exhibited a significant decline 80 days after the initial vaccine administration. However, a longer interval of 175 days between booster injections resulted in significantly higher neutralizing antibody titers. The individuals who received the extended interval boosters exhibited a more robust immune response, suggesting that a vaccine schedule with a 175-day interval between injections may provide superior protection against SARS-CoV-2. Conclusion: This study underscores the importance of optimizing vaccine booster dosing schedules to maximize protection against SARS-CoV-2. The results indicate that a longer interval of 175 days between the third and fourth doses of the vaccine can significantly enhance the neutralizing antibody response, potentially offering improved protection against the virus. These findings have important implications for vaccine distribution and administration strategies in the ongoing battle against the SARS-CoV-2 pandemic. Further research and largescale trials are needed to confirm and extend these findings for broader public health implications.

Nitrogen Wash-Out Technique to Measure Functional Residual Capacity Based on Expired o2/Co2 Analysis (o2/Co2 분석기를 사용하여 폐의 기능적 잔기용량을 계측하는 질소세척법 개발)

  • Kim, Goon-Jin;Kim, Kyung-Ah;Lee, Jae-Hun;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.329-334
    • /
    • 2004
  • Functional residual capacity (FRC) is an important diagnostic parameter measured using $N_{2}$ analyzer. Since $N_{2}$ analyzer is expensive as well as cumbersome for use of noisy vacuum pump, the FRC measurement becomes possible only in large well-equipped hospitals. The present study introduced a new $TN_{2}$ wash-out technique to measure FRC by $O_{2}/CO_{2}$ analysis, which is relatively cheaper and much simpler to apply. Slower $O_{2}$ response was compensated for high frequency to be coincided with $CO_{2}$ response, thereby enabled indirect, but accurate $N_{2}$ concentration measurement. FRC was estimated by continuous integration of expired $N_{2}$ volume obtained with air flow signal. Experiment with 3 L syringe, a standard calibration device recommended by the American Thoracic Society, demonstrated less than 1% error at 0, 1, and 2 L. Correlation coefficient was almost ideal, guaranteeing linear estimation of FRC. The present technique is inexpensive and simple to apply, thus should he of great convenience.

Structural Design of High-Rise Building in Toranomon-Azabudai Project (A Block)

  • Kazumasa, Okabe;Kai, Toyama;Takuya, Furuta;Jyunichi, Yamashita;Hiroki, Mukai;Takahiro, Goseki;Shingo, Masuda;Dai, Shimazaki;Yusuke, Miyagi;Yuji, Ozawa
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.157-170
    • /
    • 2022
  • This paper explains about structural planning and structural design of the high-rise building in Toranomon-Azabudai Project (A Block) which is now under construction. The building is about 330 meters high, has 4.2 aspect ratio, and the outline of the building has shallow curve. We adopted seismic response control structure. The building is a steel rigid frame structure with braces, and it has enough stiffness to obtain its primary natural period to be less than about seven seconds, in consideration of wind response, seismic response and inhabitability for the wind shaking. In terms of business continuity plan, the building has a high seismic performance; value of story drift angle shall be 1/150 or less and members of the building remain almost undamaged while or after a large earthquake. Active mass dumper shall be installed at the top of the building to improve inhabitability while strong wind is blowing.

Extraction Conditions for Phenolic Compounds with Antioxidant Activities from White Rose Petals

  • Choi, Jae Kwon;Lee, Yoon Bok;Lee, Kyun Hee;Im, Hae Cheon;Kim, Yun Bae;Choi, Ehn Kyoung;Joo, Seong Soo;Jang, Su Kil;Han, Nam Soo;Kim, Chung Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • The extract of white rose petals has an antioxidant effect and can be used to treat allergic disease. The purpose of this study was to identify optimal conditions for extracting antioxidative compounds from white rose petals with 2,2-diphenyl-1-picrylhydrazyl scavenging activities. A response surface methodology based on a central composite design was used to investigate the effects of three independent variables: ethanol concentration ($X_1$), extraction temperature ($X_2$), and extraction time ($X_3$). The estimated optimal conditions for obtaining phenolic compounds with antioxidant activities were as follows: ethanol concentration of 42% ($X_1$), extraction time of 80 min ($X_3$), and extraction temperature of $75^{\circ}C$ ($X_2$). The estimated optimal conditions for obtaining flavonoid compounds with antioxidant effects were an ethanol concentration of 41% ($X_1$), extraction time of 119 min ($X_3$), and an extraction temperature of $75^{\circ}C$ ($X_2$). Under these conditions, predicted response values for the phenolic and flavonoid contents were 243.5 mg gallic acid equivalent/g dry mass and 19.93 mg catechin equivalent (CE)/g dry mass, respectively.

Effects of Sucrose, Phosphate, and Calcium Carbonate on the Production of Pikromycin from Streptomyces venezuelae

  • Yi, Jeong Sang;Kim, Minsuk;Kim, Sung-Jin;Kim, Byung-Gee
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.496-502
    • /
    • 2015
  • Polyketide secondary metabolites share common precursor pools, acyl-CoA. Thus, the effects of engineering strategies for heterologous and native secondary metabolite production are often determined by the measurement of pikromycin in Streptomyces venezuelae. It is hard to compare the effectiveness of engineering targets among published data owing to the different pikromycin production media used from one study to the other. To determine the most important nutritional factor and establish optimal culture conditions, medium optimization of pikromycin from Streptomyces venezuelae ATCC 15439 was studied with a statistical method, Plackett-Burman design. Nine variables (glucose, sucrose, peptone, (NH4)2SO4, K2HPO4, KH2PO4, NaCl, MgSO4·7H2O, and CaCO3) were analyzed for their effects on a response, pikromycin. Glucose, K2HPO4, and CaCO3 were determined to be the most significant factors. The path of the steepest ascent and response surface methodology about the three selected components were performed to study interactions among the three factors, and the fine-tune concentrations for maximized product yields. The significant variables and optimal concentrations were 139 g/1 sucrose, 5.29 g/l K2HPO4, and 0.081 g/l CaCO3, with the maximal pikromycin yield of 35.5 mg/l. Increases of the antibiotics production by 1.45-fold, 1.3-fold, and 1.98-fold, compared with unoptimized medium and two other pikromycin production media SCM and SGGP, respectively, were achieved.

Policy implication of nuclear energy's potential for energy optimization and CO2 mitigation: A case study of Fujian, China

  • Peng, Lihong;Zhang, Yi;Li, Feng;Wang, Qian;Chen, Xiaochou;Yu, Ang
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1154-1162
    • /
    • 2019
  • China is undertaking an energy reform from fossil fuels to clean energy to accomplish $CO_2$ intensity (CI) reduction commitments. After hydropower, nuclear energy is potential based on breadthwise comparison with the world and analysis of government energy consumption (EC) plan. This paper establishes a CI energy policy response forecasting model based on national and provincial EC plans. This model is then applied in Fujian Province to predict its CI from 2016 to 2020. The result shows that CI declines at a range of 43%-53% compared to that in 2005 considering five conditions of economic growth in 2020. Furthermore, Fujian will achieve the national goals in advance because EC is controlled and nuclear energy ratio increased to 16.4% (the proportion of non-fossil in primary energy is 26.7%). Finally, the development of nuclear energy in China and the world are analyzed, and several policies for energy optimization and CI reduction are proposed.

CO-CLUSTER HOMOTOPY QUEUING MODEL IN NONLINEAR ALGEBRAIC TOPOLOGICAL STRUCTURE FOR IMPROVING POISON DISTRIBUTION NETWORK COMMUNICATION

  • V. RAJESWARI;T. NITHIYA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.861-868
    • /
    • 2023
  • Nonlinear network creates complex homotopy structural communication in wireless network medium because of complex distribution approach. Due to this multicast topological connection structure, the queuing probability was non regular principles to create routing structures. To resolve this problem, we propose a Co-cluster homotopy queuing model (Co-CHQT) for Nonlinear Algebraic Topological Structure (NLTS-) for improving poison distribution network communication. Initially this collects the routing propagation based on Nonlinear Distance Theory (NLDT) to estimate the nearest neighbor network nodes undernon linear at x(a,b)→ax2+bx2 = c. Then Quillen Network Decomposition Theorem (QNDT) was applied to sustain the non-regular routing propagation to create cluster path. Each cluster be form with co variance structure based on Two unicast 2(n+1)-Z2(n+1)-Z network. Based on the poison distribution theory X(a,b) ≠ µ(C), at number of distribution routing strategies weights are estimated based on node response rate. Deriving shorte;'l/st path from behavioral of the node response, Hilbert -Krylov subspace clustering estimates the Cluster Head (CH) to the routing head. This solves the approximation routing strategy from the nonlinear communication depending on Max- equivalence theory (Max-T). This proposed system improves communication to construction topological cluster based on optimized level to produce better performance in distance theory, throughput latency in non-variation delay tolerant.

Several Sources of Bias in Consumer Sensory Tests (소비자 관능검사 결과에 영향을 미치는 인자)

  • Seo, Dong-Sun;Sin, Yong-Guk;Baek, Seung-Cheon;Kim, Su-Gwang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.154-160
    • /
    • 1998
  • The purpose of consumer sensory tests is to assess the personal response by current or potential customers of a product or specific product characteristics. There are several sources of bias in obtaining consumer response than often lead to misleading results. These biases include the situational variables of the testing environment, the products and the subjects. This paper discusses the sources of bias in consumer testing, need to be controlled when conducting consumer test.

  • PDF

The EEG Spectrum Analysis for the $(CO_2)$ gas Concentration Change in the Autonmobile (자동차 실내가스 $(CO_2)$ 농도변화에 대한 EEG 변화 연구)

  • 백운이;최낙진;서지영;김민정;임정옥;허증수;이덕동
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.57-62
    • /
    • 1998
  • The objectice of this study is to dvaluate the physical condition response of a drever by the change of CO$^{2}$ concentration in the automobile with EEG spectrum analysis. The experiment was performed in a semi-shielded simulated automobile with 10 healthy adults. The results showed that as CO$_{2}$ concentration increased from 500ppm to 6,000ppm, the $\alpha$' value significantly decreased(p*<0.05) while $\beta$' increased (p*<0.05). In a real parked automobile with 2 adult passengers, the CO$_{2}$ gas concintration reached at 6,000ppm in 15 minutes. These spectral data are in well agreement with the subject's verval statement of experiencing uncomfortableness when CO$_{2}$gas was increased ti over 5,000ppm. These results indecated that the EEG spectrum analysis can be appropriately used to assess physical condition of a driver in the changing automobile environment.

  • PDF

Humoral Immunity against SARS-CoV-2 and the Impact on COVID-19 Pathogenesis

  • Lee, Eunjin;Oh, Ji Eun
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.392-400
    • /
    • 2021
  • It has been more than a year since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged. Many studies have provided insights into the various aspects of the immune response in coronavirus disease 2019 (COVID-19). Especially for antibody treatment and vaccine development, humoral immunity to SARS-CoV-2 has been studied extensively, though there is still much that is unknown and controversial. Here, we introduce key discoveries on the humoral immune responses in COVID-19, including the immune dynamics of antibody responses and correlations with disease severity, neutralizing antibodies and their cross-reactivity, how long the antibody and memory B-cell responses last, aberrant autoreactive antibodies generated in COVID-19 patients, and the efficacy of currently available therapeutic antibodies and vaccines against circulating SARS-CoV-2 variants, and highlight gaps in the current knowledge.