• Title/Summary/Keyword: $CO_2$ generator

Search Result 215, Processing Time 0.027 seconds

Modification of an LPG Engine Generator for Biomass Syngas Application (바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가)

  • Eliezel, Habineza;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

Modeling and Simulation of Small and Medium-sized Ships for Fuel Reduction Rate Verification (연료 감소율 검증을 위한 중소형 선박의 모델링 및 시뮬레이션)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.914-921
    • /
    • 2022
  • The International Maritime Organization (IMO) has set a goal of reducing ship's carbon dioxide emissions by 70% and greenhouse gas emissions by 50% by 2050 compared to 2008. Shipowners and shipyards are promoting various R&D activities such as LNG propulsion, ammonia propulsion, electric propulsion, CO2 capture, and shaft generators as a way to satisfy this problem. The dual shaft generator has the advantage that it can be directly applied to an existing ship through remodeling. In this paper, the total fuel reduction rate that can be obtained by applying the shaft generator to the existing ship was verified through simulation. For this purpose, the size of the medium-sized ship was defined, and the governor, diesel engine, propeller, torque switch, generator for shaft generator, propulsion motor for shaft generator, and ship model were modeled and simulated.

Development of Real-Time Generation Methods of Simulated Surface Clutter Signals for Airborne Radar (항공기 레이다를 위한 모의 지상 클러터 신호의 실시간 생성 방법 개발)

  • Kim, Tae-Hyung;Moon, Hyun-Wook;Lee, Sung-Won;Ryu, Seong-Hyun;Yang, Eunjung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.176-187
    • /
    • 2016
  • It takes considerable time to generate accurate clutter signal using conventional clutter generation scheme. In this paper, real-time schemes are proposed, which have reasonable accuracy and are applicable to testing the radar performance. Proposed methods are compared through the simulation, which represented that clutter signal can be generated in real-time when using proposed methods for simulated signal generator.

A Study on Insulation Properties of Global VPI Type Generator through Replacement of Stator Windings

  • Kong, Taesik;Kim, Heedong;Lee, Sooho;Park, Jaehyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.113-117
    • /
    • 2017
  • As the competition in the manufacturing market for small and medium sized generators is intensifying, there is increasing pressure to reduce production cost. Manufacturing the generator stator windings with global vacuum pressure impregnation (GVPI) is a very effective way to reduce costs. However, the stator winding has a fatal disadvantage in that the insulation wears due to vibration in the slot. KEPRI (KEPCO Research Institute) conducted insulation diagnosis for three generators in KOMIPO (Korea Midland Power Co., Ltd.) which were manufactured by GVPI and operated for about 17 years. Insulation diagnosis showed that deterioration of insulation has progressed significantly. Therefore, KEPRI recommended replacing the stator windings of all three generators. In this paper, the insulation properties of the generator stator winding with global GVPI are described by comparing and analyzing the insulation diagnosis results and visual inspection for stator windings.

A Study on Requirement of Nuclear Power Plant Load Following Operation Condition Considering Power System Security (계통 안전성을 고려한 원자력발전의 부하추종 요건연구)

  • Lee, Hyun-Chul;Baek, Young-Sik;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1565-1570
    • /
    • 2012
  • Nuclear power generation is increasing domestic power supply ratio by lower CO2 emission and fuel prices. Currently, nuclear power generator has been operated with maximum power output. Therefore, nuclear power generator could be no effect to managing the reactive power reserve on power system. The reactive power reserve is calculated to the difference between maximum facility and operation generation capacity of the power system. This paper was proposed that load following of nuclear power is control by using 15-bus power system model. In the simulation result, power system is shown to safety state by operating load following of nuclear power generator. This method has be improved the supplied reliability through economic and efficient operation.

Waveform Generator for W-band Compact Radar (W-band 소형 레이다용 파형발생부)

  • Lee, Man-Hee;An, Se-Hwan;Kim, Young-Gon;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.97-102
    • /
    • 2018
  • In this paper, W-band Waveform Generator for compact radar has been designed and fabricated. DDS (Direct Digital Synthesizer) is applied to generate CW (Continuous Wave) and FMCW (Frequency Modulation Continuous Wave) waveform at high speed. We designed two LO (Local Oscillator) paths for functions of distance delay and distance tracking tests at the prpposed system without extra test equipment. Two mode selections are provided by switch. It is observed that fabricated waveform generator performs -91 dBc/Hz phase noise at offset 1 kHz and -63.2 dBc spurious. Proposed W-band Waveform Generator is expected to apply for W-band compact radar transceiver module.

Development of Wave Power Generator using Horizontal Motions of the Wave (파랑의 수평운동을 이용한 파력발전장치 개발)

  • Hwang, S.S.;Park, I.H.;Lee, D.S.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.12 no.2
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, we suggested the wave power generator using horizontal motions of the wave for use in the coastal sea. The length of the horizontal movement of the wave in the vicinity of the sea surface is larger than the length of the vertical reciprocating movement of the wave, hence the proposed device has a wave power transmission plate. In addition, because the motion of the wave is maximum to the sea surface, by arranging the buoyancy tanks at the top of the wave power transmission plate, it is always capable of vertical movement in accordance with the sea surface. To confirm the usefulness of the proposed wave power generator, we constructed a mathematical model of the wave power generator and carried out simulation using bondgraph. Furthermore, the efficiency was verified by measuring the degree of electrical energy production through a preliminary experiment.

A Study on Reliability Validation by Infrared Thermography of Composite Material Blade for Wind Turbine Generator (풍력발전용 복합소재 블레이드의 적외선 열화상 검사를 이용한 신뢰성 검증)

  • Kang, Byung Kwon;Nam, Mun Ho;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.176-181
    • /
    • 2014
  • In these days, new and renewable energy is getting popular around globe and wind power generator is one of the renewable energy. In this study, we conducted a study on defect detection of composite material blade for wind power generator by applying active infrared thermography and produced a defect test piece by applying composite material used for blade of wind power generator. An infrared thermal camera and 2 kW halogen lamp are used for the purpose of research as equipments. Also, we analyzed temperature characteristic by using infrared thermal camera after checking a heat source on a test piece and found effectiveness of infrared thermography to blade of wind power generator by detecting defects resulting from temperature difference of a test piece, which eventually improve the safety and reliability of the composite material blade.

A Study on Generator Maintenance Scheduling Considering Renewable Energy Generators (신재생에너지 발전원을 고려한 발전기 예방정비계획수립에 관한 연구)

  • Lee, Yeonchan;Oh, Ungjin;Choi, Jaeseok;Jung, Myeunghoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.601-610
    • /
    • 2018
  • The purpose of this paper is to establish a new optimum Generator Maintenance Scheduling(GMS) considering renewable energy generator. In this paper, the total renewable energy generation is estimated using hourly capacity factor of renewable energy generator. The GMS was optimized with the objective function of maximizing the minimum reserve rate, minimizing the probabilistic production cost, minimizing the loss of load expectation, and minimizing $CO_2$ emissions. In the case study of this paper, GMS considering renewable energy and GMS not considering renewable energy are shown by each objective function. And it shows scenarios of the reliability, the environmental and economical factors when two nuclear power plants inputted and ten coal thermal power plants shut downed respectively.

Variation of CO2 Concentration in Greenhouses and Effects on Growth and Yield in Alstroemeria with CO2 Supplementation

  • Seonjin Lee;WonSuk Sung;Donguk Park;Pilsoo Jeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.231-238
    • /
    • 2023
  • We analyzed the variations in the CO2 concentration and temperature between a CO2-enriched and control greenhouse. We cultivated Alstroemeria 'Hanhera' in the two greenhouses and assessed the growth parameters (stem length, stem thickness, and the number of flowers) and yield. The CO2-enriched greenhouse had a CO2 generator that produced CO2 at rate of 0.36 kg/h and its windows were programmed to open when the temperature exceeded 20℃ and close when it dropped below 15℃. The control greenhouse had no additional CO2 supplementation, and its windows were programmed to open when the temperature exceeded 20℃ and close at approximately 17:00. In the morning, CO2 concentration remained above 500 ppm in the CO2-enriched greenhouse, which was higher than that in the control greenhouse (approximately 370 ppm). The ventilation effect only through the side windows to reduce the temperature in both greenhouses did not appear dynamically. CO2 supplementation promoted plant growth, resulting in a significant increase in plant yield of over 60% compared to that of the control greenhouse. Our findings suggest that elevated CO2 concentration in the morning can significantly promote the growth and development of Alstroemeria during the winter.