• Title/Summary/Keyword: $CO_2$ gas sensor

Search Result 312, Processing Time 0.03 seconds

Characteristics of CuO doped WO3 Thick Film for Gas Sensors (CuO가 첨가된 WO3 후막 가스센서 특성 연구)

  • Yu, Il;Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Yoon-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1621-1625
    • /
    • 2010
  • Recently, due to increase in the usage of toxic gas and inflammability gas, the ability to monitor and precisely measurement of these gases is crucial in preventing the occurrence of various accidents. CuO doped and undoped $WO_3$ thick films gas sensors were prepared using screen-printing method on alumina substrates. A structural properties of $WO_3$:CuO thick films had monoclinic phase and triclinic phase of $WO_3$ together. Sensitivity of $WO_3$:CuO sensor at 2000 ppm of $CO_2$ gas and 50 ppm of $H_2S$ gas was investigated. 4 wt% Cu doped $WO_3$ thick films had the highest sensitivity of $CO_2$ gas and $H_2S$ gas.

Quasi-Solid-State Hybrid Electrolytes for Electrochemical Hydrogen Gas Sensor

  • Kim, Sang-Hyung;Han, Dong-Kwan;Hong, SeungBo;Jeong, Bo Ra;Park, Bok-Seong;Han, Sang-Do;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.294-301
    • /
    • 2019
  • The quasi-solid-state hybrid electrolytes were synthesized by chemical cross-linking reaction of methacrylate-functionalized $SiO_2$ ($MA-SiO_2$) and tetra (ethylene glycol) diacrylate in aqueous electrolyte. A quasi-solid-state electrolyte synthesized by 6 wt.% $MA-SiO_2$ exhibited a high ionic conductivity of $177mS\;cm^{-1}$ at room temperature. The electrochemical $H_2$ sensor assembled with quasi-solid-state electrolyte showed relatively fast response and high sensitivity for hydrogen gas at ambient temperature, and exhibited better durability and stability than the liquid electrolyte-based sensor. The simple construction of the sensor and its sensing characteristics make the quasi-solid-state hydrogen sensor promising for practical application.

Real-time Air Quality Monitoring System Based on Wireless Network (무선네트워크기반 공기질 실시간 모니터링 시스템)

  • Paik, Seung Hyun;Lee, Jun Yeong;Jung, Sang Woo;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.143-151
    • /
    • 2016
  • In this paper, a real-time air quality monitoring system based on wireless network is designed and implemented for industrial park or multiuse facilities. The existing gas detector is high price and hard to apply the remote monitoring system. On the other hand, demand for air quality monitoring is increasing because of industrial gas accident, air pollution, and so on. In Korea, indoor air regulation was established by law. According to indoor air regulation, CO2, CO, and NO2 are important gases as the air quality standard. So we study the gas detector for indoor air quality and the wireless network system. The wireless network consist of sensor network and WCDMA to apply various place. To verify the performance of the implemented gas detector, the gas measurement experiment is performed in laboratory environment by using the realized gas detecting wireless sensor node. And we evaluate the experiment results.

Preparation of Pt/porous Gold Electrode for CO Oxidation (CO 가스 산화를 위한 백금/다공성 골드 전극의 개발)

  • Shin, So-Hyang;Kim, He-Ro;Oh, Cheon-Seok;Ko, Jae-Wook;Kim, Young-Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.27-32
    • /
    • 2011
  • Management of gas safety is becoming important with increasing use of gas facilities. U-safety system is being promoted as part of national management of gas, and thus real-time and in-situ gas sensor should be developed. Detection method for When the gas sensor is installed in gas conduit, explosion may be likely, because hydrocarbon gases is usually used the difference of thermal resistance between reference and working electrode. Therefore, it is required to detect the hydrocarbons, such as $CH_4$ and CO, at room temperature via electrochemically catalytic reaction. In this study, Pt nanoparticle was doped on the porous gold powder by electrolytic plating method, and then it was used as catalytic electrode for CO oxidation. For Pt/PAu electrode, approximately 21% of CO conversion was obtained. It is noted that Pt/PAu electrode could be used to react the oxidation of hydrocarbon gases at room temperature via applying of external voltage.

Sensing Properties of $\alpha$-Fe$_2$O$_3$ Thin Film Gas Sensor to Reducing Gases ($\alpha$-Fe$_2$O$_3$ 박막 센서의 환원성 가스감지특성)

  • 이은태;장건익;이덕동
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.465-470
    • /
    • 1999
  • Sensing properties of $\alpha$-Fe2O3 thin film to reducing gases such as CHx and CO were systematically examined after deposition on Al2O3 substrate by PECVD(Plasma Enhanced Chemical Vapor Deposition)technique. Microstructure of deposited $\alpha$-Fe2O3 thin film showed the porous island structure. This specimen was annealed at 450, 550, $650^{\circ}C$ to enhance the gas sensing properties and investigated in terms of CO and C4H10 concentration from 500ppm to 3,000 ppm at operating temperature of 35$0^{\circ}C$ The gas sensitivity(%) to C4H10 measured at the operating temperature of 35$0^{\circ}C$ was 98.24 (highest sensitivity) 69.51 to CO and 2% to CH4 respectviely.

  • PDF

Gas Diffusion Tube Dimension in Sensor-Controlled Fresh Produce Container System to Maintain the Desired Modified Atmosphere

  • Jo, Yun Hee;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.2
    • /
    • pp.61-65
    • /
    • 2013
  • Modified atmosphere (MA) of reduced $O_2$ and elevated $CO_2$ concentrations has been used for keeping the quality of fresh produce and extending the shelf life. As a way to attain the beneficial MA package around the produce, a gas diffusion tube or perforation can be attached onto the container and controlled on real time in its opening/closing responding to $O_2$ and $CO_2$ concentrations measured by gas sensors. The timely-controlled opening of the gas diffusion tube can work in harmony with the produce respiration and help to create the desired MA. By use of the mathematical modeling, the effect of tube dimension on the controlled container atmosphere was figured out in this study. Spinach and king oyster mushroom were used as typical commodities for designing the model container system (0.35 and 0.9 kg in 13 L, respectively) because of their respiration characteristics and the optimal MA condition ($O_2$ 7~10%/$CO_2$ 5~10% for spinach; $O_2$ 2~5%/$CO_2$ 10~15% for mushroom). With a control logic for the gas composition to stay as close as possible to optimum MA window without invading injurious low $O_2$ and/or high $CO_2$ concentrations, the atmosphere of the sensor-controlled container could stay at its lower $O_2$ boundary or upper $CO_2$ limit under certain tube dimensional conditions. There were found to be the ranges of the tube diameter and length allowing the beneficial MA. The desired range of the tube dimension for spinach consisted of combinations of larger diameter and shorter length in the window of 0.3~2 cm diameter and 0.2~10 cm length. Similarly, that for king oyster mushroom was combinations of larger diameter and shorter length in the window of 0.9~2 cm diameter and 0.2~3 cm in length. Clear picture on generally affordable tube dimension range may be formulated by further study on a wide variety of commodity and pack conditions.

  • PDF

Implementation of Real-Time Monitoring System for Livestock Growth Environment Information using Wireless Sensor Network (무선센서 네트워크를 이용한 가축생육환경정보 실시간 모니터링 시스템 구현)

  • Kim, Young-Wung;Paik, Seung-Hyun;Jon, Yong-Jun;Lee, Dae-Ki;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.6
    • /
    • pp.301-309
    • /
    • 2012
  • In this paper, a real-time monitoring system based on WSN is designed and implemented to monitor livestock growth environment information which includes the temperature, humidity and harmful gases such as $CO_{2},\;CO,\;NH_{3},\;H_{2}S$ and so on. The proposed system consists of the wireless sensor nodes, the monitoring management device, the management server and the user interface program based on PC/Smart phone. To verify the performance of the implemented system, gas measurement experiments are performed in laboratory environment by using the designed wireless sensor nodes. And it is able to estimate the concentration of gases. The implemented system is able to monitor the proposed environmental element information through the developed GUI.

[ SnO2 ] Gas Sensors Using LTCC (Low Temperature Co-fired Ceramics) (LTCC 를 이용한 SnO2 가스 센서)

  • Cho, Pyeong-Seok;Kang, Chong-Yun;Kim, Sun-Jung;Kim, Jin-Sang;Yoon, Seok-Jin;Hieu, Nguyen Van;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.69-72
    • /
    • 2008
  • A sensor element array for combinatorial solution deposition research was fabricated using LTCC (Low-temperature Co-fired Ceramics). The designed LTCC was co-fired at $800^{\circ}C$ for 1 hour after lamination at $70^{\circ}C$ under 3000 psi for 30 minutes. $SnO_2$ sol was prepared by a hydrothermal method at $200^{\circ}C$ for 3 hours. Tin chloride and ammonium carbonate were used as raw materials and the ammonia solution was added to a Teflon jar. 20 droplets of $SnO_2$ sol were deposited onto a LTCC sensor element and this was heat treated at $600^{\circ}C$ for 5 hours. The gas sensitivity ($S\;=\;R_a/R_g$) values of the $SnO_2$ sensor and 0.04 wt% Pd-added $SnO_2$ sensor were measured. The 0.04 wt% Pd-added $SnO_2$ sensor showed higher sensitivity (S = 8.1) compared to the $SnO_2$ sensor (S = 5.95) to 200 ppm $CH_3COCH_3$ at $400^{\circ}C$.

Effects of Temperature and Humidity on NDIR CO2 Gas Sensor (비분산 적외선 이산화탄소 가스센서 특성의 온·습도 영향)

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2017
  • This article describes the characteristics of nondispersive infrared carbon dioxide gas sensor according to the temperatures and humidifies. In this researches, a thermopile sensor that included application-specific integrated circuit (ASIC) was used and the White-cell structure was implemented as an optical waveguide. The developed sensor modules were installed in gas chamber and then the temperature of gas chamber has been increased from 283 K to 313 K with 10K temperature step. In order to analyze the effects of humidity levels, the relative humidity levels were changed from 30 to 80%R.H. with small humidifier. Then, the characteristics of sensor modules were acquired with the increment of carbon dioxide concentrations from 0 to 2,000 ppm. When the initial voltages of sensors were compared before and after humidifying the chamber at constant temperature, the decrements of the output voltages of sensors are like these: 9mV (reference infrared sensor), 41 mV (carbon dioxide sensor), 2 mV (temperature sensor). With the increment of ambient temperature, the averaged output voltage of carbon dioxide sensor was increased 19 mV, however, when the humidity level was increased, it was decreased 14mV. Based upon the experimental results, the humidity effect could be alleviated by the increment of temperature, so the effects of humidity and temperature could be only compensated by the ambient temperature itself. The estimated carbon dioxide concentrations showed 10% large errors below 200 ppm, however, the errors of the estimations of carbon dioxide concentrations were less than ${\pm}5%$ from 400 to 2,000 ppm.

Developement of Gas Detector Dissolved In Transfomer Oil (변압기 절연유중 수소 가스의 검지 시스템 설계)

  • Hwang, Kyu-Hyun;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.207-210
    • /
    • 2004
  • In oil-filled equipment such as transformers, partial discharge or local overheating will make insulating material(oil, kraft paper, proclain and wood) be stressed and generate many sort of gases($CO,\;CO_2,\;H_2,\;C_2H_4$) which are dissolved in transformer oil. The ratio of this gas can make diagnostic tecchniques of the lifetime of transfomer so, it is important to monitoring $H_2$ gas continuously. This paper developes a system of detecting about $H_2$ gas by using $H_2$ gas sensor, and we describe operation and performance of this system

  • PDF