• Title/Summary/Keyword: $CO_2$ curing

Search Result 282, Processing Time 0.028 seconds

Evaluation of Fundamental Properties of Cement Paste according to Carbonation Curing Conditions (탄산화 양생 조건에 따른 시멘트 페이스트의 기초적 특성 평가)

  • Sim, Sang-Rak;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.87-88
    • /
    • 2023
  • In this study, as a fundamental research to establish the mechanism of carbonate precipitation, we compared and evaluated the mechanical properties of cement paste under different carbonation conditions. The research results showed that as the CO2 concentration increased, the compressive strength also increased.

  • PDF

THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES (Glass ionomer cement 표면의 산부식 효과에 관한 연구)

  • Han, Seung-Weon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

A Study on Extraction Condition of Co-PET from PET/Co-PET Sea-Island Type Microfiber Fabric (PET/Co-PET해도사 직물의 Co-PET추출 조건에 관한 연구)

  • 박명수;윤종호;조대현
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.120-127
    • /
    • 2001
  • In order to make a microfiber fabric with PET/Co-PET Sea-Island Type microfiber, the optimum condition of extraction and elimination of Co-PET from the mocrofiber was examined. At the same time, the physical property change of the fabric with respect to the change of the relative amount of the Co-PET in the microfiber was also examined to provide a directly applicable data set to the industry. The sample fabric used was warp 75/36(DTY) and weft 0.05d(PET/Co-PET, Sea Island Type Microfiber) twill fabric of 36 separated yarns+40/24(high shrinking yarn) with 130/48 ITY. The data set was made at various NaOH concentrations and steam temperatures with time as a main variable. The physical properties examined were the tensile properties. The results obtained were the tensile. The results obtained were 1. For a proper extraction of Co-PET (13.5%)from the microfiber with wet curing, it takes more than 5 min. in 8 and 12% of NaOH solutions but it takes only 3 min. in 18% of NaOH solution at 12$0^{\circ}C$. 2. For a proper extraction of Co-PET (13.5%) from the microfiber with wet curing, ti takes 3~5min. in 12 and 14% of NaOH solution and it takes less than 3 min. in 18% of NaOH solution at $130^\circ{C}$. 3. The increasing ratio of WT increased with increasing NaOH concentrations and the equilibrium point reached was 3 min. at $120^\circ{C}$. 4. The WT increasing ratio was greater in 14 and 18% NaOH solutions than in 8 and 12% of NaOH solutions at $130^\circ{C}$5. The RT ratio changes at $120^\circ{C}$ in 8 and 12% of NaOH solutions were indifferent from that at $130^\circ{C}$ in 12% of NaOH solution. However, the RT was apparently decreased with increasing NaOH concentration.

  • PDF

A Study on Extraction Condition of Co-PET from PET/Co-PET Sea-Island Type Microfiber Fabric (PET/Co-PET 해도사 직물의 Co-PET 추출 조건에 관한 연구)

  • Park, Myeong Su;Yun, Jong Ho;Jo, Dae Hyeon
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.34-34
    • /
    • 2001
  • In order to make a microfiber fabric with PET/Co-PET Sea-Island Type microfiber, the optimum condition of extraction and elimination of Co-PET from the microfiber was examined. At the same time, the physical property change of the fabric with respect to the change of the relative amount of the Co-PET in the microfiber was also examined to provide a directly applicable data set to the industry. The sample fabric used was warp 75/36(DTY) and weft 0.05d(PET/Co-PET, Sea Island Type Microfiber) twill fabric of 36 separated yarns+40/24(high shrinking yarn) with 130/48 ITY. The data set was made at various NaOH concentrations and steam temperatures with time as a main variable. The physical properties examined were the tensile properties. The results obtained were the tensile properties. The results obtained were 1. For a proper extraction of Co-PET (13.5%)from the microfiber with wet curing, it takes more than 5 min. in 8 and 12% of NaOH solutions but it takes only 3 min. in 18% of NaOH solution at 120℃. 2. For a proper extraction of Co-PET (13.5%) from the microfiber with wet curing, it takes 3∼5 min. in 12 and 14% of NaOH solution and it takes less than 3 min. in 18% of NaOH solution at 130℃. 3. The increasing ratio of WT increased with increasing NaOH concentrations and the equilibrium point reached was 3 min. at 120℃. 4. The WT increasing ratio was greater in 14 and 18% NaOH solutions than in 8 and 12% of NaOH solutions at 130℃. 5. The RT ratio changes at 120℃ in 8 and 12% of NaOH solutions were indifferent from that at 130℃ in 12% of NaOH solution. However, the RT was apparently decreased with increasing NaOH concentration.

Effect of Alkaline Activator and Curing Condition on the Compressive Strength of Cementless Fly Ash Based Alkali-Activated Mortar (시멘트를 사용(使用)하지 않은 플라이애시 알칼리 활성(活性) 모르타르의 압축강도(壓縮强度)에 미치는 알칼리 활성제(活性劑) 및 양생조건(養生條件)의 영향(影響))

  • Kang, Hyun-Jin;Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook;Lee, Jang-Hwa
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.39-50
    • /
    • 2009
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of fly ash, a by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the source of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effective in the reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in order to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

A Study on the Heat-Curing of Acrylic Resin using Ring Furnace (Ring Furnace를 이용한 Acrylic Resin의 온성에 관한 연구)

  • Choi, Seog-Soon
    • Journal of Technologic Dentistry
    • /
    • v.13 no.1
    • /
    • pp.27-31
    • /
    • 1991
  • The purpose of this study was to evaluate the effect of curing time and curing temperature on the hear - Curing of acrylic resin using ring furnace. Specimens were fabricated from 2 kinds(Laboron, Bertex) heat-cured resin. Total 200 samples were divided into 4 groups(70$^{\circ}C$, 100$^{\circ}C$, 13$^{\circ}C$, 150$^{\circ}C$) and each group was divided into 5 small groups(30 min., 45min., 60min., 75min., 90min.). A microscope(Olympus Coll Co. Japan) was used to examine a randomly selected central zone, midzone and surface for each complete specimen. The results of the experiment were as follows : 1. To obtain non-polymerzation, cure the resin for 30 minutes at 70$^{\circ}C$ and 100$^{\circ}C$ in a ring furnace. 2. To obtain with porosity, cure the resin for 45 minutes, 60 minutes and 75 mintes at 70$^{\circ}C$ and for 90 minutes at 150$^{\circ}C$ in ring furnace. Porosity appears in Laboron for 30 minutes, 45 minutes at 150$^{\circ}C$ in a ring furnace. 3. Every other specimens connot get a sight of special problem with makes eye in the made surface.

  • PDF

A Review Study on the Application of γ-C2S (γ-C2S 활용에 관한 문헌적 연구)

  • Chen, zheng-xin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.118-119
    • /
    • 2016
  • γ-C2S is known as a kind of substance that it does not react with water at room temperature. However it could react with the CO2 producing CaCO3 and silica gel as the carbonation products. Thus γ-C2S can be used as a mineral addition to improve the compressive strength and durability of concrete. On the other hand, the manufacture of γ-C2S can give an effective utilization of industrial by-product with low energy consumption and low CO2 emission. This paper aims to summarize the development situation on this field.

  • PDF

Compressive Strength Properties of Steam-cured High Volume GGBFS Cement Concrete (증기양생한 고로슬래그 다량치환 시멘트 콘크리트의 압축강도 특성)

  • Hong, Seong-Hyun;Kim, Hyung-Suk;Choi, Seul-Woo;Lee, Kwang-Myong;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, lots of researches on concrete with high volume mineral admixture such as ground granulated blast furnace slag (GGBFS) have been carried out to reduce $CO_2$. It is known that the precast concrete has an advantage of high strength at early age due to steam curing, even if concrete has high replacement level of mineral admixture. However it demands the investigation of compressive strength properties according to steam curing regimens. In this study, concretes with water-binder ratio of 32, 35% and water content of 135, 150, $165kg/m^3$ were produced to investigate compressive strength properties of high volume (60% by mass) GGBFS cement concrete according to steam curing regimens. Then steam curing was implemented with the maximum temperature of 50, $60^{\circ}C$ and steaming time of 5, 6, 7 hours. From the test results, it was found that steam curing was effective to raise early strength of high volume GGBFS cement concrete, but 28 day compressive strengths of steam cured specimens were lower than those of water cured specimens. Thus, a further study would be needed for the optimum steam curing regimens to satisfy target demolded strength and specified strength for the application of high volume GGBFS cement concrete to precast concrete members.

The Study on the Properties of EPDM/NR Blends (EPDM/NR 블랜드의 물성에 관한 연구)

  • Go, Jin-Hwan;Park, Sung-Soo
    • Elastomers and Composites
    • /
    • v.29 no.2
    • /
    • pp.121-130
    • /
    • 1994
  • The physical properties of rubber blend between natural rubber(NR) and ethylene propylene diene terpolymer(EPDM) were investigated as a study of EPDM composite materials. For EPDM/NR blends, the effects of ethylene and diene contents in EPDM, blend ratio, dicumyl peroxide(DCP) curing system on the physical properties, interfacial adhesion force and dynamic crack growth etc. were studied. EPDM/NR blends loaded with carbon black were prepared by mechanical mixing and cured by plate heating cure press. Crosslinking density was measured by swelling method with toluene. The physical properties of all blends were measured with Instron, fatigue to failure(FTF), Demattia flex cracking tester(DMFC), scanning electron microscopy (SEM), etc. As the ethylene and diene contents in EPDM increased, the physical properties, such as dynamic crack growth, adhesion to other component were increased too. Interfacial adhesion force of EPDM/NR blends to dissimilar layer was improved by the use of optimum peroxide curing system.

  • PDF

A Study on the Hardening Characteristics of Alumino-Silicate Inorganic Binder Using Red-Mud according to Curing Temperature (레드머드를 활용한 알루미노 규산염계 무기결합재의 양생온도별 경화특성에 관한 연구)

  • Lee, Yeong-Won;Kang, Suk-Pyo;Lee, Jun;Kim, Jae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.259-262
    • /
    • 2012
  • Recently, as the national policy of green growth is promoted, construction field also makes an effort to reduce CO2 gas released when producing cement continuously. In other words, as the method solving environmental pollution and resources exhaustion, lots of mineral material compounds such as blast furnace slag powder which is industrial by-product, fly ash, red mud, etc. are examined to bo used as the substitute good of cement Therefore this study is to investigate the hardening characteristics of alumino-silicate inorganic binder using red-mud used as a accelerator of industrial by-product such as fly ash and blast furnace slag powder according to curing temperature. As a result, it is effective to use red-mud as the accelerator of inorganic binder with other additory accelerators.

  • PDF