• 제목/요약/키워드: $CO_2$ Evolution

검색결과 425건 처리시간 0.026초

Effect of Temperature Change on the Respiration Characteristics of Vegetables

  • Kawagoe, Yoshinori;Seo, Yasuhisa;Oshita, Sei-Ichi;Sagara, Yasuyuki
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.947-952
    • /
    • 1996
  • The effect of fluctuating temperature on the respiration of vegetables has been investigated. Spinach was selected as the experimental material because of its high respiratory activity and kept under the condition that temperature changed alternately at low and high levels every 4 hours. The low-high level temperature combination was set in $1-10^{\circ}C,{\;}1-20^{\circ}C{\;}and{\;}1-30^{\circ}C$. Respiration was evaluated in terms of quantity of $CO_2$ evolved from spinach. The evolution rate of $CO_2$ was determined by a change in its concentration. The evaluation rate of $CO_2$ followed closely the temperature change. In the temperature combinations at $1-10^{\circ}C{\;}and{\;}1-20^{\circ}C$, the relationship between $CO_2$ evolution rate and temperature was found to be able to express by Arrhenius law, while at $1-30^{\circ}C$, it did not obey the law.

  • PDF

질소추비와 생장조정제 Inabenfide 처리가 벼 도복 및 에틸렌 발생에 미치는 영향 (Effect of Inabenfide and Nitrogen Top-Dressing on Ethylene Evolution and Lodging in Rice)

  • Lee, Sang-Chul;Takeshi, Tanabe
    • 한국작물학회지
    • /
    • 제38권5호
    • /
    • pp.383-390
    • /
    • 1993
  • 본 실험은 1992년 일본 동경농업대학 온실에서 질소 추비와 생장억제제 처리가 벼의 생육과 도복형질에 미치는 형태학적 특성과의 관계를 조사함과 동시에 내성 에틸렌 발생에 미치는 영향을 구명하기 위하여 실험을 수행한바 아래와 같은 결과를 얻었다. 1. 식물생장억제제인 Inabenfide는 초장은 감소시켰지만 수량구성요소, 엽록소 함량, $CO_2 동화량 및 분벽에는 변화가 없었다. 2. Inabenfide를 수잉기에 처리하였을 때 절간 신장을 감소시켰으나, 세 번째와 네 번째의 절간 직경과 줄기의 두께를 증가시켰다. 3. 질소추비는 대체로 초장과 $CO_2 동화률에는 뚜렷하게 영향을 나타내지 않았다. 4. 에틸렌 발생은 생장억제제에 대하여 많은 변화를 보여 주었으며 Inabenfide를 출수 15일 전에 처리하였을 때 에틸렌 발생은 무처리구보다 낮게 나타났다. 5. 질소 추비량에 따른 에틸렌 발생은 추비량이 많을 때 발생량이 높았으며 질소 추비와 에틸렌발생 사이에는 높은 상관관계가 있는 것으로 나타났다.

  • PDF

잣나무엽(葉)의 초기(初期) 분해과정(分解過程)에 있어서 무기태(無機態) 질소(窒素) 및 CO2 방출속도(放出速度)의 변화(變化) (Changes of Inorganic Nitrogen and CO2 Evolution Rate on the Decomposition Process of Korean White Pine Needles)

  • 이명종;한상섭;김정제
    • 한국산림과학회지
    • /
    • 제69권1호
    • /
    • pp.13-18
    • /
    • 1985
  • 잣나무의 녹엽(綠葉), 낙엽(落葉), F층(層)의 엽(葉)과 떡갈 및 굴참나무의 녹엽(綠葉)을 각각 토양(土壤)에 혼합(混合)하여 53일간 $30^{\circ}C({\pm}1)$로 항온배양(恒温培養)하는 동안 토양중(土壤中)의 무기태(無機態) 질소(窒素) 및 $CO_2$ 방출속도(放出速度)의 변화(變化)를 측정(測定)하여 다음의 결과(結果)를 얻었다. 1) 배양초기(培養初期)에는 무기태(無機態) 질소(窒素)의 유기화(有機化)로 무기태(無機態) 질소량(窒素量)의 감소(減少)가 강(強)하게 일어났고, 시간(時間)의 경과(經過)에 따라 점차 증가(增加) 하였다. 2) 혼합(混合)한 엽중(葉中)의 유기태(有機態) 질소(窒素)의 유기화속도(有機化速度)는 잣나무의 엽중(葉中) 녹엽(綠葉)에서 가장 컸으나, 굴참 및 떡갈나무의 녹엽(綠葉)보다는 작았다. 3) $CO_2$ 방출속도(放出速度)의 크기는 굴참나무녹엽(綠葉), 떡갈나무녹엽(綠葉), 잣나무녹엽(綠葉), 잣나무 낙엽(落葉), F층(層)의 잣나무엽(葉)을 혼합(混合)한 토양(土壤)의 순(順)이었고, 시간의 경과(經過)에 따라 점차 감소했다. 4) 질산태(窒酸態) 질소량(窒素量)은 점차 증가(增加)하여 배양(培養) 53일 후에, 암모니아태(態應) 질소량(窒素量)을 상회(上迴)하였다.

  • PDF

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal;Babar, Pravin;Kim, Jin Hyeok
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.217-222
    • /
    • 2020
  • The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.

Impact of Fermentation Rate Changes on Potential Hydrogen Sulfide Concentrations in Wine

  • Butzke, C.E.;Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권5호
    • /
    • pp.519-524
    • /
    • 2011
  • The correlation between alcoholic fermentation rate, measured as carbon dioxide ($CO_2$) evolution, and the rate of hydrogen sulfide ($H_2S$) formation during wine production was investigated. Both rates and the resulting concentration peaks in fermentor headspace $H_2S$ were directly impacted by yeast assimilable nitrogenous compounds in the grape juice. A series of model fermentations was conducted in temperature-controlled and stirred fermentors using a complex model juice with defined concentrations of ammonium ions and/or amino acids. The fermentation rate was measured indirectly by noting the weight loss of the fermentor; $H_2S$ was quantitatively trapped in realtime using a pre-calibrated $H_2S$ detection tube which was inserted into a fermentor gas relief port. Evolution rates for $CO_2$ and $H_2S$ as well as the relative ratios between them were calculated. These fermentations confirmed that total sulfide formation was strongly yeast strain-dependent, and high concentrations of yeast assimilable nitrogen did not necessarily protect against elevated $H_2S$ formation. High initial concentrations of ammonium ions via addition of diammonium phosphate (DAP) caused a higher evolution of $H_2S$ when compared with a non-supplemented but nondeficient juice. It was observed that the excess availability of a certain yeast assimilable amino acid, arginine, could result in a more sustained $CO_2$ production rate throughout the wine fermentation. The contribution of yeast assimilable amino acids from conventional commercial yeast foods to lowering of the $H_2S$ formation was marginal.

Morphology Construction of Molybdenum Doped Nickel Sulfide Electrocatalyst Induced by NH4F to Promote Hydrogen Evolution Reaction

  • Baikai Zhang;Xiaohui Li;Maochang Liu
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.353-364
    • /
    • 2024
  • Through component regulation and morphological construction, it is of considerable significance to develop high-activity and high-stability electrocatalyst for hydrogen evolution in electrolytic water. In the hydrothermal process, Mo-doped nickel-based sulfide catalysts (Mo-NiS-Fx) with a variety of morphologies (prisms, rods, flakes, and cones) were created by adding NH4F with varying masses. Among these, the flaky Mo-NiS-F1.2 exhibited exceptional performance towards electrochemical hydrogen evolution reaction, surpassing most similar catalysts with an overpotential of 79 mV at 10 mA cm-2 and a Tafel slope of 49.8 mV dec-1. Significantly, Mo-NiS-F1.2 maintained its high activity for hydrogen evolution over 60 h at a current density of 10 mA cm-2, making it suitable for widespread commercial application. According to the experimental findings, an electrocatalyst with a high surface area and a porous structure is better suited to exposing more gas transfer routes and active sites, which would encourage the hydrogen evolution reaction. This study presents a straightforward procedure for creating electrocatalysts with a range of morphologies, which can serve as a model for the creation of catalysts for use in industrial manufacturing.

파일럿 규모 빈 퇴비화 시스템에서 연속 및 간헐 통기 돈분 퇴비의 안정도 평가 (Evaluation of Continuously and Intermittently Aerated Hog Manure Compost Stability in a Pilot-scale Bin Composting System)

  • 홍지형
    • 한국농공학회지
    • /
    • 제40권5호
    • /
    • pp.100-108
    • /
    • 1998
  • Compost stability represents the state of microbiological activity and measurements of respiration either through $CO_2$ evolution or $O_2$ uptake should provide the best indication of this state. Hog manure amended with sawdust was composted in a pilot-scale reactor vessels using continuous and intermittent aeration for 3 weeks. In this study we evaluated the $CO_2$ respiration rate effect of aeration method on the reduction of $CO_2$ evolution, and investigated the stability of fresh and finished compost for plant growth. The intermittently aerated composting is a practical proposition for a very stable compost making. The $CO_2$ respiration rate in the fresh and finished compost during intermittently aerated composting was maintained from 0.3 to 1.4 and was good for use in horticulture, while the continuously aerated composting was 7 to 23 and needed more time for compost curing.

  • PDF

청과물 저장에 관한 연구(제 2보) -사과 저장에 있어서 환경압력 및 기체조성이 사과조직내 기체조성과 Ethylene 생성에 미치는 영향- (A Study on the storage of Fresh Fruits and Vegetables (Part II) Effects of Intercellular atmosphere and Ethylene evolution by control of external pressure and gas composition in Apple Fruits.)

  • 손태화;최종욱;서온수
    • 한국미생물·생명공학회지
    • /
    • 제1권1호
    • /
    • pp.25-30
    • /
    • 1973
  • 본 연구는 1971년과 1972년 9월 25일에 수확한 흥옥과 동년 10월 25일에 수확한 국광을 시료로하여 이들 사과의 저장에 있어서 환경압력 및 환경기체조성이 사과조직내 기체조성과 호흡 및 ethylene 생성에 미치는 영향을 규명하기 위하여 실험하였던 바 그 결과는 다음과 같다. 1. 과실조직내 기체량은 환경압력에 비례적으로 변화하며, 환경압력이 사과의 조직내 기체조성 및 기체량에 현저하게 영향을 미쳤다. 2. 조직내 $CO_2$발생량의 증가는 조직내 $O_2$ 소비량에 관련되며, 그러므로 내부 $O_2$ 소비의 감소되는 시기와 호흡에 있어서 climacteric rise의 시기와 일치하였다. 3. $CO_2$ 발생량의 증가는 ethylene 생성 후에 나타나며 그리고 상압구의 이와 같은 현상은 감압구에 잇달아 일어난다. 4. 감압저장에 있어서도 저산소농도와 고탄산가스농도의 조절로써 CA효과를 얻을 수 있다.

  • PDF

Soil Carbon Dioxide Flux and Organic Carbon in Grassland after Manure and Ammonium Nitrate Application

  • Lee, Do-Kyoung;Doolittle, James J.
    • 한국환경농학회지
    • /
    • 제24권3호
    • /
    • pp.238-244
    • /
    • 2005
  • Fertilization effects on changes in soil $CO_2$ flux and organic C in switchgrass (Panicum virgatum L.) land managed for biomass production were investigated. The mean daily soil $CO_2$ flux in the manure treatment was 5.63 g $CO_2-C\;m^{-2}\;d^{-1}$, and this was significantly higher than the mean value of 3.36 g $CO_2-C\;m^{-2}\;d^{-1}$ in the control. The mean daily $CO_2$ fluxes in N and P fertilizer treatments plots were not different when compared to the value in the control plots. Potentially mineralizable C (PMC), soil microbial biomass C (SMBC), and particulate organic C (POC) were highest at the 0 to 10 cm depth of the manure treatment. Potentially mineralizable C had the strongest correlation with SMBC (r = 0.91) and POC (r = 0.84). There was also a strong correlation between SMBC and POC (r = 0.90). Our results indicated that for the N and P levels studied, fertilization had no impact on temporal changes in soil organic C, but manure application had a significant impact on temporal changes in soil $CO_2$ evolution and active C constituents such as PMC, SMBC, and POC.

산소발생반응을 위한 CuCo2O4 나노섬유 전기화학 촉매 합성 및 특성 분석 (Synthesis and Characterization of CuCo2O4 Nanofiber Electrocatalyst for Oxygen Evolution Reaction)

  • 원미소;장명제;이규환;김양도;최승목
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.539-548
    • /
    • 2016
  • The non-noble 1D nanofibers(NFs) prepared by electrospinning and calcination method were used as oxygen evolution reaction (OER) electrocatalyst for water electrolysis. The electrospinning process and rate of solution composition was optimized to prepare uniform and non-beaded PVP polymer electrospun NFs. The diameter and morphology of PVP NFs changed in accordance with the viscosity and ion conductivity. The clean metal precursor contained electrospun fibers were synthesized via the optimized electrospinning process and solution composition. The calcined $CuCo_2O_4$ NFs catalyst showed higher activity and long-term cycle stability for OER compared with other $Co_3O_4$, $NiCo_2O$ NF catalysts. Furthermore, the $CuCo_2O_4$ NFs maintained the OER activity during long-term cycle test compared with commercial $CuCo_2O_4$ nanoparticle catalyst due to unique physicochemical and electrochemical properties by1D nanostructure.