DOI QR코드

DOI QR Code

Morphology Construction of Molybdenum Doped Nickel Sulfide Electrocatalyst Induced by NH4F to Promote Hydrogen Evolution Reaction

  • Baikai Zhang (Huadian Electric Power Research Institute Co., Ltd.) ;
  • Xiaohui Li (Huadian Electric Power Research Institute Co., Ltd.) ;
  • Maochang Liu (School of energy and power engineering, Xi'an Jiaotong University)
  • Received : 2024.01.15
  • Accepted : 2024.03.04
  • Published : 2024.08.31

Abstract

Through component regulation and morphological construction, it is of considerable significance to develop high-activity and high-stability electrocatalyst for hydrogen evolution in electrolytic water. In the hydrothermal process, Mo-doped nickel-based sulfide catalysts (Mo-NiS-Fx) with a variety of morphologies (prisms, rods, flakes, and cones) were created by adding NH4F with varying masses. Among these, the flaky Mo-NiS-F1.2 exhibited exceptional performance towards electrochemical hydrogen evolution reaction, surpassing most similar catalysts with an overpotential of 79 mV at 10 mA cm-2 and a Tafel slope of 49.8 mV dec-1. Significantly, Mo-NiS-F1.2 maintained its high activity for hydrogen evolution over 60 h at a current density of 10 mA cm-2, making it suitable for widespread commercial application. According to the experimental findings, an electrocatalyst with a high surface area and a porous structure is better suited to exposing more gas transfer routes and active sites, which would encourage the hydrogen evolution reaction. This study presents a straightforward procedure for creating electrocatalysts with a range of morphologies, which can serve as a model for the creation of catalysts for use in industrial manufacturing.

Keywords

Acknowledgement

This work was supported by the Zhejiang Provincial Postdoctoral Science Foundation [323770].

References

  1. J. Li, W. Yin, J. Pan, Y. Zhang, F. Wang, L. Wang, and Q. Zhao, Nano Res., 2023, 16, 8638-8654.
  2. S. Kumari and P. Sautet, J. Phys. Chem. Lett., 2023, 14(10), 2635-2643.
  3. S. A. Mirshokraee, M. Muhyuddin, R. Lorenzi, G. Tseberlidis, C. L. Vecchio, V. Baglio, E. Berretti, A. Lavacchi, and C. Santoro, SusMat, 2023, 3(2), 248-262.
  4. H. Xiao, H. Shin, and W. A. Goddard III, Proc. Natl. Acad. Sci. USA., 2018, 115(23), 5872-5877.
  5. L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, and X. Yao, Nat. Commun., 2016, 7, 10667.
  6. X. Ma, C. Chang, Y. Zhang, P. Niu, X. Liu, S. Wang, and L. Li, ACS Sustain. Chem. Eng., 2020, 8(22), 8318-8326.
  7. S. Hu, C. Xiang, Y. Zou, F. Xu, and L. Sun, Nanomaterials, 2023, 13(12), 1871.
  8. M. Chen, Q. Su, N. Kitiphatpiboon, J. Zhang, C. Feng, S. Li, Q. Zhao, A. Abudula, Y. Ma, and G. Guan, Fuel, 2023, 331, 125794.
  9. Y. Qin, L. Xu, Z. Zhu, and W. Y. Wong, J. Mater. Chem. A, 2023, 11, 11840-11848.
  10. K. Zhang, Y. Duan, N. Graham, and W. Yu, Appl. Catal. B: Environ., 2023, 323.
  11. H. Zhang, B. Xi, Y. Gu, W. Chen, and S. Xiong, Nano Res., 2021, 14, 3466-3473.
  12. Z. Han, X. Liang, S. Wang, L. Zhou, and Z. Zhao, Mater. Lett., 2019, 246, 63-66.
  13. J. L. Pinilla, H. Puron, D. Torres, I. Suelves, and M. Millan, Carbon, 2014, 81, 574-586.
  14. Y. Li, L. Wang, A. Song, M. Xia, Z. Li, and G. Shao, Electrochim. Acta, 2018, 268, 268-275.
  15. P. Wang, T. Jia, and B. Wang, J. Power Sources, 2020, 474, 228621.
  16. L. Yu, J. F. Yang, B. Y. Guan, Y. Lu, and X. W. D. Lou, Angew. Chem. Int. Ed., 2018, 57(1), 172-176.
  17. Y. Z. Wang, M. Yang, Y.-M. Ding, N.-W. Li, and L. Yu, Adv. Funct. Mater., 2022, 32(6), 2108681.
  18. M. Yang, C. H. Zhang, N. W. Li, D. Luan, L. Yu, and X. W. D. Lou, Adv. Sci., 2022, 9(9), 2105135.
  19. Y. Li, H. Guo, Y. Zhang, H. Zhang, J. Zhao, and R. Song, J. Mater. Chem. A, 2022, 10, 18989-18999.
  20. S. Li, F. Ji, S. Li, H. Jin, W. Luo, Y. Ma, J. Wu, Z. Chao, N. Naik, D. Pan, and Z. Guo, ES Energy Environ., 2022, 16, 15-25.
  21. P. S. Venkatesh, N. Kannan, M. G. Babu, G. Paulraj, and K. Jeganathan, Int. J. Hydrogen Energ., 2022, 47(88), 37256-37263.
  22. G. Liu, H. G. Yang, J. Pan, Y. Q. Yang, G. Q. Lu, and H.-M. Cheng, Chem. Rev., 2014, 114(19), 9559-9612.
  23. L. Jiang, J. Zhang, B. Chen, S. Zhang, Z. Zhang, W. Wan, and Y. Song, Electrochem. Commun., 2022, 135, 107200.
  24. P. Junbang, C. Aiempanakit, and K. Aiempanakit, J. Met. Mater. Miner., 2022, 32(2), 24-33.
  25. T. Xu, L. Yang, J. Li, N. Usoltseva, V. An, X. Jin, C. Zhang, X. Zhang, and B. Liu, Inorg. Chem., 2021, 60(14), 10781-10790.
  26. L. Zheng, W. Bi, Z. Jin, and S. Liu, Chinese Chem. Lett., 2020, 31(8), 2083-2086.
  27. S. Khalid, C. Cao, M. Naveed, and W. Younas, Sustainable Energy Fuels, 2017, 1, 1795-1804.
  28. L. Mu, C. Feng, and H. He, MATCH Commun. Math. Comput. Chem., 2006, 56, 97-111.
  29. J. Pan, G. Liu, G. Q. Lu, and H.-M. Cheng, Angew. Chem. Int. Ed., 2011, 50(9), 2133-2137.
  30. Z. Liu, D. D. Sun, P. Guo, and J. O. Leckie, Chem. Eur. J., 2007, 13(6), 1851-1855.
  31. N. Liu, Y. Li, Y. Li, L. Cao, N. Nan, C. Li, and L. Yu, ACS Appl. Mater. Interfaces, 2021, 13(12), 14355-14364.
  32. X. Feng, S. Bian, N. Wang, F. Wang, H. Guan, X. Hao, M. Ma, X. Gao, and Y. Chen, J. Electrochem. Soc., 2020, 167, 106501.
  33. Y. Liang, Y. Yang, K. Xu, T. Yu, S. Yao, Q. Peng, and C. Yuan, J. Catal., 2020, 381, 63-69.
  34. D. L. Jiang, W. Ma, Y. Zhou, B. Quan, and D. Li, J. Colloid Interface Sci., 2019, 550, 10-16.
  35. C. Liang, W. Cao, L. Zhou, P. Yang, X. Zhao, P. Zhao, R. Qiu, L. Yang, Q. Huang, and D. Astruc, ChemCatChem, 2020, 12(6), 1647-1652.
  36. S. Zhang, C. Fang, Y. Liu, S. Lin, S. Lin, R. Zeng, Q. Wei, L. Zeng, Y. Chen, and B. Na, Surf. Interfaces, 2020, 21, 100789.
  37. T. H. M. Lau, X. W. Lu, J. Kulhavy, S. Wu, L. Lu, T. Wu, R. Kato, J. S. Foord, Y. L. Soo, K. Suenaga, and S. C. E. Tsang, Chem. Sci., 2018, 9, 4769-4776.
  38. X. Yin, H. Dong, G. Sun, W. Yang, A. Song, Q. Du, L. Su, and G. Shao, Int. J. Hydrogen Energ., 2017, 42(16), 11262-11269.